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I. INTRODUCTION

Different methods have been used to derive the equations
of motion for a damped quantum oscillator in a quantum-
mechanical heat bath on the basis of a microscopical descrip-
tion f1–8g. The thermal relaxation of a system was mainly
restricted by the Markovian limitsinstantenious dissipation,
Gaussiand-time-correlated fluctuationsd and by the weak-
coupling limit between the oscillator and heat bath, and by
high temperatures. If the dynamics of the system is very fast,
a colored noise and nonlocal dissipation should be assumed.
There are many systems that cannot be described by a Mar-
kovian process: for example, the case of a low bath tempera-
ture, particularly if the dynamics involves tunneling transi-
tions through the potential barrier. In many new devices
needed for the emerging fields of nanotechnology and quan-
tum computing the non-Markovian effects are very impor-
tant. The question of the behavior of the dissipative quantum
system beyond the weak-coupling and high-temperature lim-
its has raised interest in simple exactly solvable models
f7,9–15g. In these models the heat bath is assumed to be a set
of harmonic oscillators interacting linearly in coordinates
with the collective harmonic oscillator subsystem. The den-
sity and coupling constants of the environmental modes are
chosen in such a way that the equations of motion take the
familiar classical forms. Important progress beyond the limi-
tations mentioned above was made in Refs.f7,12,13,15g us-
ing the path integral technique. For instance, the nonexpo-
nential decay of correlation functions was found in the low-
temperature range. However, the complicated structure of the
path integral scheme makes even a numerical evaluation in
many cases very cumbersomef7g. There is still a need for
simpler, although approximate, equations of motion. The
present paper is an effort in this direction.

We use the Langevin approach which is widely applied to
finding the effects of fluctuations and dissipations in macro-
scopical systems. The Langevin method in the kinetic theory
significantly simplifies the calculation of nonequilibrium
quantum and thermal fluctuations and provides a clear pic-
ture of the dynamics of the processf1,3g. In Sec. II A we

present a fully quantum-mechanical derivation of general-
ized non-Markovian Langevin equations. These equations
fulfill the quantum fluctuation-dissipation theorem as shown
in Sec. II B. The time-dependent transport coefficients which
take the memory effects into consideration are obtained for
the general and linear couplings in coordinate and momen-
tum between the collective harmonic oscillator and bath sub-
systems in Secs. II C and IV. The microscopic justification of
the Lindblad axiomatic theory is provided in Sec. III. In Sec.
V we discuss the dynamics of the fully coupledsFCd normal
and inverted oscillators, and free motion. The analysis of the
harmonic oscillator in the rotating-wave approximation
sRWAd is done in Sec. VI. The results of illustrative numeri-
cal calculations of diffusion and friction coefficients and
variances for FC oscillator are presented in Sec. VII.

A second paper follows this paper which is devoted to the
treatment of the escape rate from the metastable potential as
well as the capture probability into the metastable well with
the time-dependent transport coefficients obtained for the FC
oscillator.

II. COUPLING OF GENERAL FORM

A. Generalized non-Markovian Langevin equations

In order to derive the quantum non-Markovian Langevin
equations and the time-dependent transport coefficients for a
collective subsystem, a suitable microscopic Hamiltonian of
the whole systemsthe heat bath plus collective subsystemd
has first to be formulated. In Refs.f16–18g the following
Hamiltonian was suggested:

H = Hc + Hb + Hcb,

Hc = p
1

2msqd
p + Usqd,

Hb = o
n

"vnbn
†bn,
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Hcb = o
n

Vnsqdsbn
† + bnd + io

n

Gnsq,pdsbn
† − bnd, s1d

which explicitly depends on the collective coordinateq, ca-
nonically conjugated momentump, and intrinsic heat bath
degrees of freedom expressed through the bath phonon op-
erators of creationbn

† and annihilationbn. Under the condi-

tion Gnsq,pd=hG̃nsqd ,pj+=G̃nsqdp+pG̃nsqd the Hamiltonian
H is time reversible. The termsHc, Hb, and Hcb are the
Hamiltonians of the collective subsystem depending on mass
parametermsqd and potentialUsqd, of the bath subsystem,
and of the collective-bath interaction, respectively. The
model of heat bath is an assembly of harmonic oscillators
with frequenciesvn. The coupling to the heat bath is linear in
the bath operators and corresponds to the energy being trans-
ferred to and from the bath by the absorption or emission of
bath quanta. The coupling term can have important conse-
quences on the dynamics of the collective subsystem by al-
tering the effective collective potential and by allowing en-
ergy to be exchanged with the thermal reservoir, thereby
allowing the subsystem to attain the thermal equilibrium
with the heat bath. For simplicity we consider here the two-
dimensional collective reduced phase space.

The system of Heisenberg equations of motion for the
variablesq andp and the bath phonon operatorsbn andbn

† is
obtained by commuting them withH:

q̇ =
i

"
fH,qg =

1

2
hm−1sqd,pj+ + io

n

Gn,p8 sq,pdsbn
† − bnd,

ṗ =
i

"
fH,pg = − Hc,q8 sq,pd − o

n

Vn,q8 sqdsbn
† + bnd

− io
n

Gn,q8 sq,pdsbn
† − bnd, s2d

ḃn
† =

i

"
fH,bn

†g = ivnbn
† +

1

"
fiVnsqd + Gnsq,pdg,

ḃn =
i

"
fH,bng = − ivnbn +

1

"
f− iVnsqd + Gnsq,pdg. s3d

Here, we use the following notation: H̃c,q8 sq,pd
=]H̃csq,pd /]q, Vn,q8 std=]Vn(qstd) /]q, and Gn,p8 std
=]Gn(qstd ,pstd) /]p. The solutions of Eqs.s3d are

bn
†std + bnstd = fn

†std + fnstd −
2Vnsqd

"vn

−
i

vn
E

0

t

dtfḞ†stdeivnst−td

− Ḟstde−ivnst−tdg,

bn
†std − bnstd = fn

†std − fnstd +
2iGnsq,pd

"vn

−
i

vn
E

0

t

dtfḞ†stdeivnst−td + Ḟstde−ivnst−tdg,

s4d

where

fnstd = Fbns0d +
i

vn

Fs0dGe−ivnt,

Fstd =
1

"
f− iVn„qstd… + Gn„qstd,pstd…g.

If we substitute Eqs.s4d into Eqs. s2d and, respectively,
eliminate the bath variables from the equations of motion of
the collective subsystem, we obtain a set of nonlinear
integro-differential stochastic dissipative equations

q̇ =
1

2
hm̃−1sqd,pj+ −

1

2
E

0

t

dthKGVst,td,q̇stdj+

+
1

2
E

0

t

dthKGGst,td,ṗstdj+ + Fqstd,

ṗ = − H̃c,q8 sq,pd −
1

2
E

0

t

dthKVVst,td,q̇stdj+

+
1

2
E

0

t

dthKVGst,td,ṗstdj+ + Fpstd. s5d

To obtain Eqs. s5d, we disregard the terms of the
second order in ": ffGn,p8 std ,q̇st8dg ,Vn,q8 st8dg,
ffGn,q8 std ,q̇st8dg ,Vn,q8 st8dg, ffGn,q8 std ,q̇st8dg ,Gn,q8 st8dg,
ffGn,p8 std ,q̇st8dg ,Gn,q8 st8dg, ffGn,p8 std , ṗst8dg ,Gn,p8 st8dg, and
ffGn,q8 std , ṗst8dg ,Gn,p8 st8dg. This assumption, which is equiva-
lent to the trancation of the cumulant expansion after the
second order, allows us to consider only the dissipations
which are propotional todq/dt slinear dissipationd and
dp/dt. In the literature the linear dissipation is mainly dis-
cussedf1–8g. In the case of linear coupling in the momentum
sGn are linear functions ofpd and arbitrary coupling in the
coordinatesVn are complicated functions ofqd, Eqs. s5d
would be exact.

The collective Hamiltonian for the variablesq and p in
Eqs.s5d is

H̃csq,pd = p
1

2m̃sqd
p + Ũsq,pd,

with the renormalized mass parameter

m̃−1
„qstd… = m−1

„qstd… − 2o
n

fGn,p8 stdg2

"vn

and the potential energy
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Ũ„qstd… = U„qstd… − o
n

fVn„qstd…g2

"vn

.

The dissipative coefficients in Eqs.s5d are recognized as the
terms which are proportional to the operatorsq̇ and ṗ f9g.
Thus, the dissipative kernels are

KGVst,td = o
n

1

"vn

„hGn,p8 std,Vn,q8 stdj+sinsvnft − tgd

− hGn,p8 std,Gn,q8 stdj+cossvnft − tgd…,

KVGst,td = − o
n

1

"vn

„hGn,q8 std,Gn,p8 stdj+cossvnft − tgd

+ hVn,q8 std,Gn,p8 stdj+sinsvnft − tgd…,

KVVst,td = o
n

1

"vn

„fhVn,q8 std,Vn,q8 stdj+ + hGn,q8 std,Gn,q8 stdj+g

3 cossvnft − tgd + fhVn,q8 std,Gn,q8 stdj+

− hGn,q8 std,Vn,q8 stdj+gsinsvnft − tgd…,

KGGst,td = o
n

1

"vn

hGn,p8 std,Gn,p8 stdj+cossvnft − tgd. s6d

Since these kernels do not contain the phonon occupation
numbers, they are independent of the temperatureT of the
heat bath. The temperature and fluctuations enter in the
analysis through the specification of the distribution of the
initial conditions. In Eqs.s5d the operators of random forces
in the coordinate and momentum,

Fqstd = o
n

Fq
nstd = io

n

Gn,p8 stdffn
†std − fnstdg,

Fpstd = o
n

Fp
nstd = − o

n

Vn,q8 stdffn
†std + fnstdg − io

n

Gn,q8 std

3ffn
†std − fnstdg, s7d

play the role of random forces in the coordinate and momen-
tum and depend onqstd andpstd and on the initial conditions
for the operators. Following the usual procedure of statistical
mechanics, we identify the operatorsFq

nstd andFp
nstd as fluc-

tuations because of the uncertainty in the initial conditions
for the bath operators. To specify the statistical properties of
the fluctuations, we consider an ensemble of initial states in
which the operators of the collective subsystem are fixed at
valuesqs0d andps0d and the initial bath operators are drawn
from an ensemble which is canonical with respect to the
collective subsystemf9g. The initial distribution is then the
conditional density matrix r0(hbn

†,bnj uqs0d ,ps0d)
=expf−on"vnsbn

†− iF* / vndsbn+ iF /vnd /Tg /ZsTd, where
ZsTd is conditional partition function. In this ensemble the
fluctuationsFq

nstd andFp
nstd are distributed as Gaussians and

have zero average values

kkFq
nstdll = kkFp

nstdll = 0, s8d

and nonzero second moments. Here, the symbolkk¯ll de-
notes the average over the bath. The Gaussian nature of the
random forces is endorsed in the case when the bath is
treated as a set of harmonic oscillators or when the interac-
tion is the cumulative effect of a large number of weak in-
teractions where a central-limit theorem can be applied
f1,3,7g. In order to calculate the correlation functions of the
fluctuations, we use the Bose-Einstein statistics of the bath:

kkfn
†stdfn8

† st8dll = kkfnstdfn8st8dll = 0,

kkfn
†stdfn8st8dll = dn,n8nne

ivnst−t8d,

kkfnstdfn8
† st8dll = dn,n8snn + 1de−ivnst−t8d, s9d

with occupation numbers for phonons depending on tem-
peratureT: nn=fexps"vn /Td−1g−1.

Thus, we have obtained a set of generalized nonlinear
quantum Langevin equationss5d. The presence of the inte-
gral parts in these equations indicates the non-Markovian
character of the system. As one can see, the dissipative ker-
nels have the form of a memory functions, since they make
the equations of motion at timet dependent on the values of
q̇ and ṗ for previous times. If kernels are rapidly decaying
functions, Eqs.s5d have a short memory. It should be noted
also that for the reduced system the velocity is not necessary
to be proportional to the momentum. Equationss5d can be
solved numerically in the general case.

In Refs. f7,9g the quantum Langevin equations were de-
rived for a linear-in-q system-bath coupling. In Ref.f9g the
collective potential was a harmonic oscillator. The equations
of motion s5d were obtained for more general collective
Hamiltoniansarbitrary coordinate-dependent mass parameter
and more complicated potentiald and coupling between col-
lective system and thermal bath. The consequences of this
fact is that the Eqs.s5d contain additional random forcesFq
and dissipative kernelsKVG, KGV, and KGG. As will be
shown, these terms are responsible for the appearance of
additional friction and diffusion coefficientslq and Dqq. In
contrast to Refs.f7,9g, the dissipation and random forces are
functions of the coordinate and momentum in our case. The
interaction between the bath and collective system renormal-
izes the potential energy as well as the mass parameter.
Equationss5d can be applied to the systems coupled linearly
in p and arbitrary inq with the bath.

B. Fluctuation-dissipation relations for general coupling

The fluctuation-dissipation relations are the relations be-
tween the dissipation of a collective subsystem and the fluc-
tuations of random forces. Those relations express the non-
equilibrium behavior of the system in terms of equilibrium or
quasiequilibrium characteristics. They ensure that the system
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approaches the state of equilibrium. Using the propertiess8d
and s9d of random forcess7d and neglecting terms ofOs"d
fthis is consistent with the fact that the double commutator
terms in Eqs.s5d are disregardedg, we get the following sym-
metrized correlation functions sk,k8=q,pdfkk8

n st ,t8d
=kkFk

nstdFk8
n st8d+Fk8

n st8dFk
nstdll:

fqp
n st,t8d = f2nn + 1g„− hGn,p8 std,Gn,q8 st8dj+cossvnft − t8gd

+ hGn,p8 std,Vn,q8 st8dj+sinsvnft − t8gd…,

fpq
n st,t8d = − f2nn + 1g„hGn,q8 std,Gn,p8 st8dj+cossvnft − t8gd

+ hVn,q8 std,Gn,p8 st8dj+sinsvnft − t8gd…,

fpp
n st,t8d = f2nn + 1g„fhVn,q8 std,Vn,q8 st8dj+

+ hGn,q8 std,Gn,q8 st8dj+gcossvnft − t8gd

+ fhVn,q8 std,Gn,q8 st8dj+ − hGn,q8 std,Vn,q8 st8dj+g

3sinsvnft − t8gd…,

fqq
n st,t8d = f2nn + 1ghGn,p8 std,Gn,p8 st8dj+cossvnft − t8gd.

s10d

The disregarded terms would lead to relations between them
in addition to Eqs.s10d. Using Eqs.s6d and s10d and taking
into consideration that 2nn+1=cothf"vn / s2Tdg, we obtain
the quantum fluctuation-dissipation relations

o
n

fqp
n st,t8d

tanhf"vn/s2Tdg
"vn

= KGVst,t8d, s11d

o
n

fpq
n st,t8d

tanhf"vn/s2Tdg
"vn

= KVGst,t8d. s12d

o
n

fpp
n st,t8d

tanhf"vn/s2Tdg
"vn

= KVVst,t8d, s13d

o
n

fqq
n st,t8d

tanhf"vn/s2Tdg
"vn

= KGGst,t8d. s14d

The validity of the fluctuation-dissipation relations means
that we have properly identified the dissipative terms in the
non-Markovian dynamical equations of motion. Quantum
fluctuation-dissipations relations of a similar form have been
obtained before in Ref.f9g and references therein for the
simple cases of FC and RWA oscillators. We generalized the
quantum fluctuation-dissipation theorem for the case of a
more general form ofHcb. The quantum fluctuation-
dissipation relations differ from the classical ones and are
reduced to them in the limit of high temperatureT sor "
→0d:

o
n

fqp
n st,t8d = 2TKGVst,t8d,

o
n

fpq
n st,t8d = 2TKVGst,t8d,

o
n

fpp
n st,t8d = 2TKVVst,t8d,

o
n

fqq
n st,t8d = 2TKGGst,t8d. s15d

These classical realations contain only the thermal fluctua-
tions. Our formalism naturally leads to the generalization of
classical fluctuation-dissipation relation by including the
quantum fluctuations in addition to the thermal fluctuations.
Since Eqs.s5d and, following from them, the equations of
motion for the collective coordinate and momentum are con-
sistent with the fluctuation-dissipation relations, our formal-
ism provides a basis for describing the quantum statistical
effects of collective motion.

C. Derivation of nonstationary transport coefficients for the
harmonic oscillator

Assuming in Eqs.s5d the functionalsm̃, Vn,q8 , Gn,q8 , and
Gn,p8 weakly dependent onp andq in the considered interval
of t and replacing them by their average values, we can ob-
tain a set of generalized non-Markovian equations which can
be solved analytically. Approximating locally the renormal-

ized potential by a harmonic oscillator,Ũ= d̃q2/2, and apply-
ing the Laplace transformationL to Eqs.s5d, we obtain the
following set of linear equations for the transforms:

qssdhsf1 + KGVssdgj − pssdf1/m̃ + sKGGssdg

= qs0df1 + KGVssdg − ps0dKGGssd + Fqssd,

qssdfd̃ + sKVVssdg + pssdsf1 − KVGssdg

= qs0dKVVssd + ps0df1 − KVGssdg + Fpssd. s16d

For the solution of this system of equations, one should find
the rootssi of its determinant:

dssd ; s2f1 + KGVssdgf1 − KVGssdg + fd̃ + sKVVssdg

3f1/m̃ + sKGGssdg = 0. s17d

The explicit solutions for the originals are

qstd = Atqs0d + Btps0d +E
0

t

dtfCtFqst − td + C̃tFpst − tdg,

pstd = Mtqs0d + Ntps0d +E
0

t

dtfLtFpst − td + L̃tFqst − tdg,

s18d

where the time-dependent coefficients are denoted as fol-
lows:
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At = L−1Fsf1 + KGVssdgf1 − KVGssdg + f1/m̃ + sKGGssdgKVVssd
dssd G ,

Nt = L−1Fsf1 − KVGssdgf1 + KGVssdg + fd̃ + sKVVssdgKGGssd
dssd

G ,

Bt = L−1F m̃−1f1 − KVGssdg
dssd G, Mt = − L−1F d̃f1 + KGVssdg

dssd
G, Ct = L−1Fsf1 − KVGssdg

dssd G ,

Lt = L−1Fsf1 + KGVssdg
dssd G, C̃t = L−1F1/m̃ + sKGGssd

dssd G, L̃t = − L−1F d̃ + sKVVssd
dssd

G .

Here, L−1 denotes the inverse Laplace transformation and
KVVssd, KGGssd, KGVssd, and KVGssd are the Laplace trans-
forms of the dissipative kernels. The subscriptst and t de-
note the time dependence. The exact solutionsqstd and pstd
in terms of rootssi can be given by the residue theorem.

Using the time dependence ofq and p, we obtain the
valueskqstdl and kpstdl averaged over the whole system,

kqstdl = Atkqs0dl + Btkps0dl,

kpstdl = Mtkqs0dl + Ntkps0dl, s19d

and correlation functions sqtqt8
=kqstdqst8dl, sptpt8

=kpstdpst8dl, sqtpt8
=kqstdpst8dl, andsptqt8

=kpstdqst8dl:

sqtqt8
= AtAt8sq0q0

+ BtBt8sp0p0
+ AtBt8sq0p0

+ BtAt8sp0q0

+ Jqtqt8
,

sptpt8
= MtMt8sq0q0

+ NtNt8sp0p0
+ MtNt8sq0p0

+ NtMt8sp0q0

+ Jptpt8
,

sqtpt8
= AtMt8sq0q0

+ BtNt8sp0p0
+ AtNt8sq0p0

+ BtMt8sp0q0

+ Jqtpt8
,

sptqt8
= MtAt8sq0q0

+ NtBt8sp0p0
+ NtAt8sp0q0

+ MtBt8sq0p0

+ Jptqt8
, s20d

where

Jqtqt8
=E

0

t E
0

t8
dtdt8fCtCt8Iqqst − t,t8 − t8d + CtC̃t8Iqpst − t,t8 − t8d + C̃tCt8Ipqst − t,t8 − t8d + C̃tC̃t8Ippst − t,t8 − t8dg,

Jptpt8
=E

0

t E
0

t8
dtdt8fLtLt8Ippst − t,t8 − t8d + LtL̃t8Ipqst − t,t8 − t8d + L̃tLt8Iqpst − t,t8 − t8d + L̃tL̃t8Iqqst − t,t8 − t8dg,

Jqtpt8
=E

0

t E
0

t8
dtdt8fCtLt8Iqpst − t,t8 − t8d + C̃tLt8Ippst − t,t8 − t8d + C̃tL̃t8Ipqst − t,t8 − t8d + CtL̃t8Iqqst − t,t8 − t8dg,

Jptqt8
=E

0

t E
0

t8
dtdt8fLtCt8Ipqst − t,t8 − t8d + L̃tCt8Iqqst − t,t8 − t8d + L̃tC̃t8Iqpst − t,t8 − t8d + LtC̃t8Ippst − t,t8 − t8dg. s21d

The symbol k¯l in Iqqst ,td=kFqstdFqstdl, Ippst ,td
=kFpstdFpstdl, Ipqst ,td=kFpstdFqstdl, and Iqpst ,td
=kFqstdFpstdl means an average over the whole system.

In order to determine the friction and diffusion coeffi-
cients, we consider the equations for the first and second
moments, and correlation functions. Making derivative int
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of Eqs. s19d and s20d and simple but tedious algebra, we
obtain the following equations:

d

dt
kqstdl = − lqstdkqstdl +

1

mstd
kpstdl,

d

dt
kpstdl = − jstdkqstdl − lpstdkpstdl s22d

and

d

dt
sqtqt8

= − lqstdsqtqt8
+

1

mstd
sptqt8

+ Dqtqt8
,

d

dt
sptpt8

= − lpstdsptpt8
− jstdsqtpt8

+ Dptpt8
,

d

dt
sqtpt8

= − lqstdsqtpt8
+

1

mstd
sptpt8

+ Dqtpt8
,

d

dt
sptqt8

= − lpstdsptqt8
− jstdsqtqt8

+ Dptqt8
, s23d

where

lqstd =
ȦtNt − ḂtMt

BtMt − AtNt
, s24d

lpstd =
AtṄt − BtṀt

BtMt − AtNt
, s25d

1/mstd =
ȦtBt − ḂtAt

BtMt − AtNt
, s26d

jstd =
ṀtNt − ṄtMt

BtMt − AtNt
, s27d

Dqtqt8
= lqstdJqtqt8

−
1

mstd
Jptqt8

+
dJqtqt8

dt
, s28d

Dptpt8
= lpstdJptpt8

+ jstdJqtpt8
+

dJptpt8

dt
, s29d

Dqtpt8
= lqstdJqtpt8

−
1

mstd
Jptpt8

+
dJqtpt8

dt
, s30d

Dptqt8
= lpstdJptqt8

+ jstdJqtqt8
+

dJptqt8

dt
. s31d

Here, mstd depends onm̃ through Eq.s26d and an overdot
means time derivative.

The Onsager’s regression hypothesis states that the re-
gression of fluctuations is governed by macroscopical equa-
tions describing the approach to equilibriumf3,6g. One can
derive from Eqs.s22d and s23d the equations

d2

dt2
kqstdl + Flpstd + lqstd +

ṁstd
mstdG d

dt
kqstdl + F jstd

mstd

+ lpstdlqstd + l̇qstd + lqstd
ṁstd
mstdGkqstdl = 0,

d2

dt2
sqtqt8

+ Flpstd + lqstd +
ṁstd
mstdG d

dt
sqtqt8

+ F jstd
mstd

+ lpstdlqstd + l̇qstd + lqstd
ṁstd
mstdGsqtqt8

− F ṁstd
mstd

+ lpstdGDqtqt8
−

1

mstd
Dptqt8

−
d

dt
Dqtqt8

= 0.

The last equation can be rewritten as

d2

dt2
s̃qtqt8

+ Flpstd + lqstd +
ṁstd
mstdG d

dt
s̃qtqt8

+ F jstd
mstd

+ lpstdlqstd + l̇qstd + lqstd
ṁstd
mstdGs̃qtqt8

= 0,

where s̃qtqt8
=sqtqt8

−Jqtqt8
. Due to the nonzero coefficients

Dktlt8
sk, l =q and pd sor Jqtqt8

d, the equations for the correla-

tions are not identical to the equations for the average values
and the Onsanger’s regression hypothesis does not hold ex-
actly for the non-Markovian dynamics of the damped har-
monic oscillator. In particular case oft8=0 from Eqs.s21d
and s28d–s31d we obtainDktlt8

=0 andJqtqt8
=0, which means

that the Onsager principle is valid the whole time,t.0. In
Ref. f19g the validity of the Onsager principle was demon-
strated at the same condition,t8=0.

When we sett= t8 in Eqs. s23d, we obtain the equations
for the variances in the coordinatesqqstd=kq2stdl−kqstdl2

=sqtqt
−kqstdl2 and in the momentum sppstd=kp2stdl

−kpstdl2=sptpt
−kpstdl2, and the one for the mixed var-

iance sqpstd= 1
2kpstdqstd+qstdpstdl−kpstdlkqstdl= 1

2ssqtpt
+sptqt

d−kpstdlkqstdl:

ṡqqstd = − 2lqstdsqqstd +
2

mstd
sqpstd + 2Dqqstd,

ṡppstd = − 2lpstdsppstd − 2jstdsqpstd + 2Dppstd,

ṡqpstd = − flpstd + lqstdgsqpstd − jstdsqqstd +
1

mstd
sppstd

+ 2Dqpstd. s32d

From the structure of Eqs.s22d and s32d it is seen that the
dynamics of system is determined by the nonstationary fric-
tion coefficientslqstd in the coordinate andlpstd in the mo-
mentum, inverse mass parameter 1/mstd, stiffness coefficient
jstd, and diffusion coefficients in the coordinate,

Dqqstd = lqstdJqtqt
−

1

2mstd
sJqtpt

+ Jptqt
d +

1

2
J̇qtqt

, s33d

and in the momentum,
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Dppstd = lpstdJptpt
+

jstd
2

sJqtpt
+ Jptqt

d +
1

2
J̇ptpt

, s34d

and the mixed diffusion coefficient:

Dqpstd =
1

2
Flpstd + lpstd

2
sJqtpt

+ Jptqt
d + jstdJqtqt

−
1

mstd
Jptpt

+
1

2
sJ̇qtpt

+ J̇ptqt
dG . s35d

Therefore, we have obtained the Markovian-typeslocal in
timed equations for the first and second moments, but with a
general form of transport coefficients which explicitly de-
pend on time. It can be shown that the appropriate microca-
nonical equilibrium distribution is achieved in the course of
the time evolution. Att→` the system reaches the equilib-
rium statesṡpp=ṡqq=ṡqp=0d and the asymptotic diffusion
coefficients can be derived from Eq.s32d:

Dqqs`d = lqs`dsqqs`d −
1

ms`d
sqps`d,

Dpps`d = lps`dspps`d + js`dsqps`d,

Dqps`d =
1

2
Fflps`d + lqs`dgsqps`d + js`dsqqs`d

−
1

ms`d
spps`dG . s36d

Comparing Eqs.s33d–s36d, we obtain thatsqqs`d=Jq`q`
,

spps`d=Jp`p`
, and sqps`d= 1

2sJq`p`
+Jp`q`

d. If sqps`d=0 in
Eqs. s36d, then the asymptotic diffusion and friction coeffi-
cients are connected by the well-known fluctuation-
dissipation relations

Dqqs`d = lqs`dsqqs`d,

Dpps`d = lps`dspps`d,

connecting diffusion and damping constants.
It is strightforward to show that the energy of the system,

Estd = kH̃cstdl =
sppstd + kpstdl2

2mstd
+ jstd

sqqstd + kqstdl2

2
,

is changed in accordance with the equation

Ėstd = − F2lpstd +
ṁstd
mstdGsppstd + kpstdl2

2mstd
− f2lqstdjstd

+ j̇stdg
sqqstd + kqstdl2

2
+

Dppstd
mstd

+ jstdDqqstd.

One can see from these equations that for the harmonic os-
cillator dissipation rate increases withlqstd and lpstd but
decreases with increasingDppstd andDqqstd. For the case of
inverted oscillators,j,0, the friction in coordinatelqstd in-
creasesE but diffusion coefficient in coordinateDqqstd de-
creases it.

Only the diffusion coefficientDpp in momentum is often
used in applications. The other diffusion coefficientsDqq and
Dpq in the coordinate and mixed in the coordinate and mo-
mentum are assumed to be zero. It was shown in Refs.
f20,21g that the tunneling through a potential barrier, decay
of a metastable state, and decoherence depends crucially on
the transport coefficients. With the diffusion coefficient in
the coordinate the decoherence increases slower than in the
case withDqq=0. The penetrability of a barrier is larger in
the case ofDqqÞ0 due to a stronger coherence between
different states.

D. Relationship with the Lindblad theory

The equations of motions22d ands32d for the expectation
values and variances of the collective coordinate and mo-
mentum can be also obtained from the following master
equation for the reduced density matrixrstd:

ṙ = −
i

"
fH̃c,rg +

ilqstd
2"

fp,hq,rj+g −
ilpstd

2"
fq,hp,rj+g

−
Dqqstd

"2 fp,fp,rgg −
Dppstd

"2 fq,fq,rgg +
Dqpstd

"2 sfp,fq,rgg

+ fq,fp,rggd s37d

or from the following Fokker-Planck-type equation for the
Wigner reduced phase-space distribution functionWsq,p,td:

Ẇ= −
p

mstd
]W

]q
+ jstdq

]W

]p
+ lpstd

]spWd
]p

+ lqstd
]sqWd

]q

+ Dqqstd
]2W

]q2 + Dppstd
]2W

]p2 + 2Dqpstd
]2W

]q]p
. s38d

Here, for the general coupling we assume again that the fric-
tion and diffusion coefficients depend ont and on the mo-
ments but not onp andq. In the case of linear coupling they
depend only ont and this assumption is not necessary. De-
spite the generally non-Markovian nature of the dynamics of
the open system defined by Eqs.s5d, the evolution ofr̂ and
W is governed by differential equations local in time. The
memory effects are encoded in the time-dependent transport
coefficients. The general coupling with the environment re-
sults in the friction and diffusion coefficients in the coordi-
nate and momentum. This is the consequence of the exis-
tence of random forces in the momentum as well as in the
coordinate. It is easily seen that Eqs.s37d ands38d are simi-
lar in structure to the corresponding Lindbland equations
with constant transport coefficientsf20–25g. The Lindblad
theory describes the Markovian dynamics after the decay of
fast transients and establishes the most general form of the
generatorsL9 of dissipative quantum dynamicsṙ=L9r pre-
serving the positivity of the density operator under certain
conditions of the friction and diffusion coefficients. Our Eqs.
s37d and s38d are shown to be a generalization of Lindblad-
type equations in the case of nonstationary non-Markovian
transport coefficients. So our model can be seen as a micro-
scopical justification of the Lindblad theory for open quan-
tum systems.
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E. Overdamped limit

If friction in the momentum becomes very largeflpstd
@Îjstd /mstdg, the motion becomes overdamped. This mo-
tion is marked by equilibrium values forkpstdl, sppstd, and
sqpstd—i.e., sd/dtdkpstdl=ṡppstd=ṡqpstd=0. Then, the equa-
tions for kqstdl andsqqstd in Eqs.s22d and s23d are reduced
to

d

dt
kqstdl = vstd = −

jstd + mstdlqstdlpstd
mstdlpstd

kqstdl,

ṡqqstd = − 2
jstd + mstdlqstdlpstd

mstdlpstd
sqqstd + Dqq

ovstd, s39d

wherevstd is the drift coefficient and the diffusion coefficient
in the coordinate is

Dqq
ovstd = 2FDqqstd +

Dppstd + 2mstdlpstdDqpstd
m2stdlpstdflpstd + lqstdg G . s40d

In the limit of lqs`d=Dqps`d=Dqqs`d=0 we obtain the well-
known relation

Dqq
ovs`d = 2Dpps`d/fms`dlps`dg2.

The asymptotic value of the variance is obtained from Eq.
s41d as follows:

sqqs`d =
Dpps`d + 2ms`dlps`dDqps`d

ms`dflps`d + lqs`dgfjs`d + ms`dlqs`dlps`dg

+
ms`dlps`dDqqs`d

js`d + ms`dlqs`dlps`d
. s41d

The quantum variances41d can significantly deviate from the

classical onesqq
cl s`d=T/ d̃, especially in the case of smallT.

Equationss39d are the same as ones obtained from the
equation for the position distribution functionPsq,td shere,q
is thec numberd:

Ṗ = −
]

]q
fvstdPg +

1

2
Dqq

ovstd
]2

]q2P. s42d

This equation is a quantum version of the classical Smolu-
chowsky equation for the coupling of general form. The
quantum Smoluchowsky-type equation was obtained in Ref.
f26g by another method for the anharmonic potential and
linear coupling in coordinate.

If the transient times ofDqq
ovstd and vstd are equal or

smaller than the characteristic time 1/lps`d of equilibrium
of the momentum distribution, then it is a good approxima-
tion to use the asymptotic quantum diffusion and drift coef-
ficients, Dqq

ovs`d and vs`d, respectively, in the equations of
motion.

III. APPLICATION TO LINEAR COUPLING IN THE
COORDINATE AND MOMENTUM WITH

A SPECIFIC BATH

For a system with linear coupling, the termHcb of the
HamiltonianH s1d can be written as

Hcb = qo
n

ansbn
† + bnd + ipo

n

gnsbn
† − bnd, s43d

wherean andgn are real coupling constants. In this case we
get a set of Langevin equationss5d where the renormalized

collective HamiltonianH̃csq,pd contains

m̃−1 = m−1 − 2o
n

gn
2

"vn

and

Ũsqd = Usqd − q2o
n

an
2

"vn

.

Here, we takem independent ofq. The operators of random
forces and dissipative kernels in the equations forq̇std and
for ṗstd are

Fqstd = = io
n

gnffn
†std − fnstdg,

Fpstd = = − o
n

anffn
†std + fnstdg s44d

and

KGVst,td = − KVGst,td = 2o
n

angn

"vn

sinsvnft − tgd,

KGGst,td = 2o
n

gn
2

"vn

cossvnft − tgd,

KVVst,td = 2o
n

an
2

"vn

cossvnft − tgd. s45d

It is convenient to introduce the spectral densityDsv0d of
the heat bath excitations, which allows us to replace the sum
over different oscillatorsn by an integral over the frequency:
on¯→e0

`dv0Dsv0d¯. Let us consider the following spec-
tral functionsf9g:

Dsv0d
uanu2

"vn

=
a2

p

g2

g2 + v0
2 ,

Dsv0d
ugnu2

"vn

=
g2

p

g2

g2 + v0
2 ,

Dsv0d
angn

"vn

=
ag

p

g2

g2 + v0
2 , s46d

where the memory timeg−1 of the dissipation is inverse to
the phonon bandwidth of the heat bath excitations which are
coupled with the collective oscillator. This is the Ohmic dis-
sipation with a Lorenzian cutoffsDrude dissipationd f1,3,7g.
The relaxation time of the heat bath should be much less than
the period of the collective oscillator—i.e.,g@v.

Using Eqs.s45d we obtain the dissipative kernels and their
Laplace transforms in forms convenient for the further cal-
culations:
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KGVst,td = − KVGst,td =
2agg2

p
E

0

`

dv0
sinsv0ft − tgd

g2 + v0
2 ,

KGVssd = − KVGssd =
agg2 lnss2/g2d

pss2 − g2d
,

KGGst,td = g2ge−gut−tu,

KGGssd =
g2g

s+ g
,

KVVst,td = a2ge−gut−tu,

KVVssd =
a2g

s+ g
. s47d

In the limit of large bandwidth,g→`, Eqs.s47d are reduced
to

KGVst,td = − KVGst,td =
2ag

p
PS 1

t − t
D ,

KGGst,td = 2g2dst − td,

KVVst,td = 2a2dst − td, s48d

where P denotes the principal value. Thed-function kernels
mean an instantaneous Markovian dissipation.

A. Harmonic oscillator

In the case of a damped quantum oscillatorUsqd
=mv2q2/2 fŨsqd= d̃q2/2g we obtain the solutionss18d for
the collective variables where

At = o
i=1

4

biHsiFsi + g +
gag2

pssi − gd
lnS si

2

g2DG2

+ ga2Ssi + g

m̃
+ g2gsiDJesit,

Bt =
1

m̃
o
i=1

4

bifsi + ggFsi + g +
gag2

pssi − gd
lnS si

2

g2DGesit,

Mt = − d̃m̃Bt,

Nt = o
i=1

4

biFsiFsi + g +
gag2

pssi − gd
lnS si

2

g2DG2

+ g2gfd̃ssi + gd

+ a2gsigGesit,

Ct = o
i=1

4

Ct
i = Lt = o

i=1

4

Lt
i = o

i=1

4

bisifsi + ggFsi + g

+
gag2

pssi − gd
lnS si

2

g2DGesit,

C̃t = o
i=1

4

C̃t
i = o

i=1

4

bifsi + ggFsi + g

m̃
+ g2gsiGesit,

L̃t = o
i=1

4

L̃t
i = − o

i=1

4

bifsi + ggfd̃ssi + gd + a2gsigesit. s49d

Here, d̃=mv2−a2g and the constants

b1 =
1

ss1 − s2dss1 − s3dss1 − s4d
,

b2 =
1

ss2 − s1dss2 − s3dss2 − s4d
,

b3 =
1

ss3 − s1dss3 − s2dss3 − s4d
,

b4 =
1

ss4 − s1dss4 − s2dss4 − s3d

are expressed in terms of rootssi si =1, 2, 3, and 4d of the
determinantfsee Eq.s17dg

ss+ gd2dssd = s2Fs+ g +
gag2

pss− gd
lnS s2

g2DG2

+ Fs+ g

m̃

+ g2gsGfd̃ss+ gd + a2gsg = 0, s50d

in which the termgag2 lnss2/g2d /pss−gd was disregarded.
The expressions for time-dependent transport coefficients

follow from Eqs. s24d–s27d and s33d–s35d in which we
should set

Jqtqt
=

"g2

p
o
i j
E

0

`

dv0

v0f2nv0
+ 1g

g2 + v0
2 fGijstd − Gij

c stdcossv0td

− Gij
s stdsinsv0tdg, s51d

Gijstd = aijfg2sCt
iCt

j + C0
i C0

j d + a2sC̃t
iC̃t

j + C̃0
i C̃0

j dg

+ 2bijgafCt
iC̃t

j + C0
i C̃0

j g,

Gij
c std = aijfg2sCt

iC0
j + C0

i Ct
jd + a2sC̃t

iC̃0
j + C̃0

i C̃t
jdg

+ 2bijgafCt
iC̃0

j + C0
i C̃t

jg,

Gij
s std = bijfg2sCt

iC0
j − C0

i Ct
jd + a2sC̃t

iC̃0
j − C̃0

i C̃t
jdg

− 2aijgafCt
iC̃0

j − C0
i C̃t

jg,

Jqtpt
+ Jptqt

=
2"g2

p
o
i j
E

0

`

dv0

v0f2nv0
+ 1g

g2 + v0
2 fPijstd

− Pij
c stdcossv0td − Pij

s stdsinsv0tdg, s52d
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Pijstd = aijfg2sCt
iL̃t

j + C0
i L̃0

j d + a2sC̃t
iLt

j + C̃0
i L0

j dg

+ bijgafCt
iLt

j + C0
i L0

j + C̃t
jL̃t

i + C̃0
j L̃0

i g,

Pij
c std = aijfg2sCt

iL̃0
j + C0

i L̃t
jd + a2sC̃t

iL0
j + C̃0

i Lt
jdg

+ bijgafCt
iL0

j + C0
i Lt

j + C̃0
j L̃t

i + C̃t
jL̃0

i g,

Pij
s std = bijfg2sCt

iL̃0
j − C0

i L̃t
jd + a2sC̃t

iL0
j − C̃0

i Lt
jdg

− aijgafCt
iL0

j − C0
i Lt

j + C̃0
j L̃t

i − C̃t
jL̃0

i g.

Here,

aij =
sisj + v0

2

ssi
2 + v0

2dssj
2 + v0

2d
,

bij =
ssj − sidv0

ssi
2 + v0

2dssj
2 + v0

2d
.

The expression for theJptpt
can be obtained from expression

for the Jqtqt
by the following replacements:Ct

i →Lt
i and C̃t

i

→ L̃t
i. As in the case of the general coupling Hamiltonian, the

linear coupling in the coordinate and momentum gives us
also nonzero diffusion and friction coefficients in the coordi-
nate and momentum. The random forces are incorporated in
the equations forṗstd as well as forq̇std. So the equation for
the reduced density matrix has Lindblad-type structure. For
the given coupling, the fluctuation-dissipation relations are
exactly satisfied in the formss11d–s14d.

B. Inverted harmonic oscillator

For the potentialUsqd=−mv2q2/2, we can apply all the

above formulas forAt, Bt, Mt, Nt, Ct, C̃t, L̃t sSec. III Ad, Jqtqt
,

Jptpt
, andJqtpt

+Jptqt
of the harmonic oscillator and obtain the

transport coefficients by using Eqs.s24d–s27d ands33d–s35d.
The only differences are that anotherd̃=−smv2+a2gd and
the rootssi of the equation

s2Fs+ g +
gag2

pss− gd
lnS s2

g2DG2

− Fs+ g

m̃
+ g2gsG

3f− d̃g + mv2sg = 0

should be used.

C. Free motion

If Usqd=0, thend̃=−a2g andsi are the roots of the equa-
tion

s2Fs+ g +
gag2

pss− gd
lnS s2

g2DG2

− Fs+ g

m̃
+ g2gsGa2g2 = 0.

We can apply all above results of Sec. III A to obtain the
transport coefficients.

IV. FC OSCILLATOR

For the FC oscillator Usqd=mv2q2/2, the coupling
Hamiltonian is

Hcb = l1/2o
n

Gnsa† + adsbn
† + bnd =Î2lmv

"
qo

n

Gnsbn
† + bnd.

Here,a† anda are the annihilation and creation operators of
the quantum oscillator, respectively,Gn’s real coupling con-
stants, andl a parameter that measures the average strength
of the interaction. Insertinggn=0 and an=s2mvl /"d1/2Gn

=sk /"dl1/2Gn in Eq. s43d with k=s2mv"d2, we obtain a
set of Langevin equations for the damped quantum FC
oscillator:

q̇std =
pstd
m

,

ṗstd = − d̃qstd − k2E
0

t

dtKst − tdq̇std + kFstd, s53d

where

Fstd = Fpstd/k = −
l1/2

"
o

n

Gnffn
†std + fnstdg,

fnstd = Sbns0d +
kl1/2Gn

"2vn

qs0dDe−ivnt,

d̃ = mv2 −
2lk2

"2 o
n

Gn
2

"vn

,

Kst − td = KVVst,td/k2 =
2l

"2 o
n

Gn
2

"vn

cossvnft − tgd.

The set of equationss53d has the following solutionsfsee
Eqs.s18dg:

qstd = Atqs0d + Btps0d + kE
0

t

dtC̃tFst − td,

pstd = Mtqs0d + Ntps0d + kE
0

t

dtLtFst − td, s54d

where

Bt = C̃t =
1

m
L−1F 1

s2 + 2"vsKssd + d̃/m
G ,

At = mḂt + k2E
0

t

dtBtKst − td = L−1F s+ 2"vKssd

s2 + 2"vsKssd + d̃/m
G ,

Mt = − md̃Bt,

Nt = Lt = mḂt. s55d

Here, Kssd is the Laplace transformation ofKstd. If we re-
write the sumon as an integral over bath frequencies with a
density of statesDsv0d fDsv0duGsv0du2/"2v0=g2/psg2

+v0
2dg, then
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Kstd =
lg

"
e−gutu,

Kssd =
lg

"ss+ gd
,

d̃ = msv2 − 2lgvd,

Bt = o
i=1

3

Bt
i =

1

m
o
i=1

3

bissi + gdesit,

At = o
i=1

3

bifsissi + gd + 2vlggesit,

b1 =
1

ss1 − s2dss1 − s3d
,

b2 =
1

ss2 − s1dss2 − s3d
,

b3 =
1

ss3 − s1dss3 − s2d
,

andsisi =1,2,3d are the roots of the cubic equation following
Eq. s17d:

dssd = s2 + 2"vsKssd + d̃/m = fss+ gdss2 + v2d

− 2vlg2g/ss+ gd = 0. s56d

At g→` we have the instantaneous dissipation with the ker-
nel k2Kstd=s2lk2/"ddstd. From Eq.s13d it is easily to show
that the fluctuation-dissipation relation holds for the quantum
FC oscillator.

For a damped quantum FC oscillator, the expressions for
transport coefficients follow from Eqs.s24d–s27d, s33d–s35d,
s51d, ands52d, and we obtain

lqstd = Dqqstd = 0,

mstd = m,

Dppstd = lpstdJptpt
+

1

2
fJ̇ptpt

+ mjstdJ̇qtqt
g,

Dqpstd =
1

2
FjstdJqtqt

−
1

m
Jptpt

+
m

2
flpstdJ̇qtqt

+ J̈qtqt
gG

s57d

and

Jqtqt
=

2"vmlg2

p
o
i j
E

0

`

dv0

v0f2nv0
+ 1g

g2 + v0
2 „aijhfBt

iBt
j + B0

i B0
j g

− fBt
iB0

j + B0
i Bt

jgcossv0tdj − bijfBt
iB0

j − B0
i Bt

jgsinsv0td…,

Jptpt
=

2"vm3lg2

p
o
i j
E

0

`

dv0

v0f2nv0
+ 1g

g2 + v0
2 „aijhfḂt

iḂt
j + Ḃ0

i Ḃ0
j g

− fḂt
iḂ0

j + Ḃ0
i Ḃt

jgcossv0tdj − bijfḂt
iḂ0

j − Ḃ0
i Ḃt

jgsinsv0td…,

Jqtpt
+ Jptqt

=
4"vm2lg2

p
o
i j
E

0

`

dv0

v0f2nv0
+ 1g

g2 + v0
2 „aijhḂt

iBt
j

− fḂt
iB0

j + Ḃ0
i Bt

jgcossv0tdj − bijfḂt
iB0

j

− Ḃ0
i Bt

jgsinsv0td…, s58d

whereaij andbij are the same as in Sec. III A.
For the quantum FC oscillator, the equation for the re-

duced density matrixsor the Wigner distribution functiond
has no the Lindblad structure because it does not contain the
termsfilqstd /2"gfp,hq, r̂j+g and −fDqqstd /"2gfp,fp, r̂gg. This
is the consequence of the absence of random forces in the
equation forq̇std. However, the positivity of the density ma-
trix is guaranteed through the time dependence of friction,
diffusion coefficients in the momentum and of the mixed
diffusion coefficient, and by the special ratio betweenDpp
and lp. Indeed, the self-consistently obtained friction and
diffusion coefficients should not violate the uncertainty prin-
ciple for the momentum and coordinate. The non stationary
transport coefficients for the quantum FC oscillator were de-
rived before in Refs.f10,12,14,15g using the microscopic
dynamics and the path integral representation, but with an-
other spectral density of the internal heat bath excitations
than used by us. In the classical limit the time-dependent
friction and diffusion coefficients were obtained in Ref.f27g.

In accordance with Eqs.s36d the diffusion coefficients
have the following form att→`:

Dpps`d = lps`dspps`d,

Dqps`d =
1

2
Fjs`dsqqs`d −

1

m
spps`dG . s59d

If 0 .Ress2d=Ress3d.Ress1d, then using the relationship
between the roots of Eq.s56d, s1+s2+s3=−g, s1s2+s1s3
+s2s3=v2, ands1s2s3=gs2lgv−v2d, we obtain

lps`d = − ss2 + s2
*d,

js`d = d̃
us2 + gu2

us2 + gu2 − 2lgv
.

The asymptotic variances are
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sqqs`d = Jq`q`
=

2"vlg2

pm
E

0

`

dv0
v0 cothf"v0/s2Tdg

ss1
2 + v0

2dss2
2 + v0

2dss3
2 + v0

2d
=

2Tvlg2

m
o
n=0

`
sdn,0 − 2dsxn + s1 + s2 + s3d

sxn + s1dsxn + s2dsxn + s3dss1 + s2dss1 + s3dss2 + s3d

=
T

m
o
n=0

`
s2 − dn,0dsxn − gd

xn
3 − gxn

2 + v2xn + s2lgv − v2dg
,

spps`d = Jp`p`
=

2"vmlg2

p
E

0

`

dv0
v0

3 cothf"v0/s2Tdg
ss1

2 + v0
2dss2

2 + v0
2dss3

2 + v0
2d

= 2Tvlg2mo
n=0

`
sdn,0 − 2dsxnss1s2 + s1s3 + s2s3d + s1s2s3d

sxn + s1dsxn + s2dsxn + s2dss1 + s2dss1 + s3dss2 + s3d
= Tmo

n=0

`
s2 − dn,0dfxnv2 + s2lvg − v2dgg
xn

3 − gxn
2 + v2xn + s2lgv − v2dg

,

sqps`d =
1

2
sJq`p`

+ Jp`q`
d = 0, s60d

where xn=2pTn/". To evaluate the integrals in Eqs.s60d,
one commonly expands the hyperbolic cotangent into a uni-
formly convergent series.

At the high-temperaturesthe classicald limit and weak-
coupling limit ssmall ld, Eqs.s59d, are transformed into

Dpps`d = lps`dmT, Dqps`d = 0, s61d

because

js`d = d̃,

sqqs`d = −
2Tvlg2ss1 + s2 + s3d

ms1s2s3ss1 + s2dss1 + s3dss2 + s3d
=

T

msv2 − 2lgvd

=
T

d̃
,

spps`d = −
2Tvlg2m

ss1 + s2dss1 + s3dss2 + s3d
= mT.

Here, we again use the relationships between the roots of the
cubic equations56d. Thus, at the limits of high temperature
and of small damping the classical equipartition theorem
holds true.

At the low-temperature limitsT→0d we obtain from Eqs.
s60d the following asymptotic variances:

sqqs`d =
"vlg2

pm

s1
2 lnSs2

2

s3
2D + s2

2 lnSs3
2

s1
2D + s3

2 lnSs1
2

s2
2D

ss1
2 − s2

2dss1
2 − s3

2dss2
2 − s3

2d
,

spps`d =
2"vlg2m

p

s2
2s3

2 lnSs2
2

s3
2D + s1

2s2
2 lnSs1

2

s2
2D + s1

2s3
2 lnSs3

2

s1
2D

ss1
2 − s2

2dss1
2 − s3

2dss2
2 − s3

2d
.

s62d

At the weak-coupling limit we havespps`d="mv /2 and
sqqs`d=" /2mv.

The asymptoticsst@ t8.0d of the symmetric correlation
functions,

sqtqt8

as =
2"vlg2

pm
E

0

`

dv0
v0 cothf"v0/s2Tdgcosfv0st − t8dg

ss1
2 + v0

2dss2
2 + v0

2dss3
2 + v0

2d
,

sptpt8

as =
2"vmlg2

p
E

0

`

dv0
v0

3 cothf"v0/s2Tdgcosfv0st − t8dg
ss1

2 + v0
2dss2

2 + v0
2dss3

2 + v0
2d

,

s63d

have different decay behavior at the low- and high-
temperature regimes:

sqtqt8

as sT → 0d → − 2"vlg2

pms1
2s2

2s3
2

1

st − t8d2 =
− 2"l

pmv3

1

st − t8d2 ,

sqtqt8

as sT → `d → − T

2mv2g
Fs2s3ss2 + s3des1st−t8d

ss2 − s1dss3 − s1d

+
s1s3ss1 + s3des2st−t8d

ss1 − s2dss3 − s2d
+

s1s2ss1 + s2des3st−t8d

ss1 − s3dss2 − s3d
G ,

sptpt8

as sT → 0d → −
i"m

2
Fs1

2ss2 + s3des1st−t8d

ss2 − s1dss3 − s1d

+
s2

2ss1 + s3des2st−t8d

ss1 − s2dss3 − s2d
+

s3
2ss1 + s2des3st−t8d

ss1 − s3dss2 − s3d
G ,

sptpt8

as sT → `d → −
mT

2
Fs1ss2 + s3des1st−t8d

ss2 − s1dss3 − s1d

+
s2ss1 + s3des2st−t8d

ss1 − s2dss3 − s2d
+

s3ss1 + s2des2st−t8d

ss1 − s3dss2 − s3d
G .

s64d

So at low temperature the FC oscillator exhibits powerlike
decay of the correlation function in the coordinate in the
long-time limit. This effect is not manifested in the classical
limit where we have an exponential decay.
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A. FC inverted oscillator

We can also apply the formulas obtained for the FC os-
cillator to the inverted oscillator withUsqd=−mv2q2/2. In

these formulas we should used̃=−mf2vlg+v2g and the
rootssi of the equation

ss+ gdss2 − v2d − 2vlg2 = 0.

Since for the inverted oscillator we have no equilibrium re-
gime for large times in comparison to the harmonic oscilla-
tor, the direct use of asymptotic formulas leads to unphysical
results like the negative diffusion coefficient in the momen-
tum at low temperature.

B. FC free motion

For the free motionfUsqd=0g, the formulas of the FC

oscillator can be used withd̃=−2mvlg and the rootssi of
the equation

ss+ gds2 − 2vlg2 = 0.

V. RWA OSCILLATOR

In quantum optics and other fields the rotating-wave ap-
proximation is widely usedf1,3,4g. The coupling Hamil-
tonian for the RWA oscillator is

Hcb = l1/2o
n

sGn
*a†bn + Gnabn

†d

=Îlmv

2"
qo

n

sGn
*bn + Gnbn

†d + iÎ l

2"mv
po

n

sGnbn
†

− Gn
*bnd.

Here, the coupling constantsGn are taken as complex. The
RWA coupling excludes the nonresonanta†bn

† andabn terms
a†bn

† and abn. With this exclusion we disregard the rapidly
oscillating terms. As in the case of the FC oscillator, the
fluctuation-dissipation relation is satisfied for the RWA oscil-
lator.

For the RWA oscillator withUsqd=mv2q2/2 the solutions
of the equations of motion are written as

qstd = Atqs0d + Btps0d + iÎ "

2mv
E

0

t

dtfCt
* f†st − td

− Ctfst − tdg,

pstd = − m2v2Btqs0d + Atps0d −Î"mv

2
E

0

t

dtfCt
* f†st − td

+ Ctfst − tdg, s65d

where

fstd =
l1/2

"
o

n

Gn
*Sbns0d +

Gn

"vn
FÎlmv

2"
qs0d

+ iÎ l

2"mv
ps0dGDe−ivnt,

At =
1

2FCt + Ct
* + i"E

0

t

dtfCtKst − td − Ct
*K * st − tdgG ,

Bt =
i

2mvFCt − Ct
* + i"E

0

t

dtfCtKst − td + Ct
*K * st − tdgG ,

Kst − td =
l

"2o
n

uGnu2

"vn

e−ivnst−td,

Ct = L−1F 1

s+ i"sKssd + ie/"
G ,

e = "v − lo
n

uGnu2

"vn

.

If we replace the sums above by the integral over the bath
frequencies with a densityDsv0d of states as in the previous
section, then we obtain

Kstd =
lg

2"
e−gutu −

ilg2

"p
E

0

`

dv0
sinsv0td
v0

2 + g2 ,

Kssd =
lg

2"ss+ gd
−

ilg2 lnss2/g2d
2p"ss2 − g2d

,

e = "sv − lgd,

At =
1

2o
j=1

2

fb jh je
sjt + b j

*h j
*esj

* tg,

Bt =
i

2mv
o
j=1

2

fb jh je
sjt − b j

*h j
*esj

* tg,

Ct = o
j=1

2

Ct
j = o

j=1

2

b jssj + gdesjt,

h j = sj + g +
ilg

2
+

lg2 lnssj
2/g2d

2pssj − gd
.

Here,b1=−b2=ss1−s2d−1, ands1 ands2 are two simple roots
of the equation

s+ i"sKssd + ie/" = 0,

in which the term proportional to lnss2/g2d is disregarded.
This term does not introduce a singularity ats=0 because
s lnssd→0 ass→0. This term leads to corrections of the next
order in l which are assumed to be small. In the limit of a
large phonon bandwidthg, the dissipative kernel is reduced
to the familiar formf9g Kstd=sl /"ddstd−sil /"pdPs1/td. It
was stated in Ref.f28g that the effect of the principal-value
term on the physical behavior of the system is small.

For the RWA oscillator, the time-dependent transport co-
efficients result as follows: friction coefficients in the coor-
dinate and in momentum,
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lqstd = lpstd = −
ȦtAt + smvd2ḂtBt

At
2 + smvd2Bt

2 , s66d

inverse mass parameter

1/mstd =
ḂtAt − ȦtBt

At
2 + smvd2Bt

2 , s67d

stiffness coefficient

jstd = smvd2 ḂtAt − ȦtBt

At
2 + smvd2Bt

2 , s68d

and diffusion coefficients in the coordinate,

Dqqstd = lqstdJqtqt
+

1

2
J̇qtqt

, s69d

in the momentum,

Dppstd = smvd2Dqqstd, s70d

and mixed diffusion coefficients in the coordinate and mo-
mentum:

Dqpstd = 0. s71d

In expressions69d,

Jqtqt
=

"lg2

2pmv
o
i j
E

0

`

dv0
v0 cothf"v0/s2Tdgci jstd

sg2 + v0
2dssi + iv0dssj

* − iv0d
,

where

ci jstd = Ct
iCt

j* + C0
i C0

j* − Ct
iC0

j*eivnt − C0
i Ct

j*e−ivnt.

At the limit of t→`,

Dqqs`d =
1

smvd2Dpps`d = lqs`dsqqs`d. s72d

This set of diffusion coefficients can be obtained from Eq.
s37d assuming that the asymptotic state is a Gibbs

r̂=expf−H̃c/Tg /Trsexpf−H̃c/Tgd f25g. If Ress1d.Ress2d,
then

lqs`d = −
1

2
ss2 + s2

*d,

FIG. 1. Calculated time dependence ofJpp, Jqp, andJqq for "ṽ=1 MeV andm=448m0 sleft sided and for"ṽ=3 MeV andm=50m0 sright
sided. We setlp/ ṽ=1/s"ṽd. The results forT/ s"ṽd=0.1/s"ṽd and 1/s"ṽd are presented by solid and dashed lines, respectively.
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1/ms`d = js`d/smvd2 =
uImss2du

mv
. s73d

The asymptotic variance in the coordinate can be easily de-
rived:

sqqs`d = Jq`q`
=

l"g2

2pvm
E

0

`

dv0
v0 cothf"v0/s2Tdg
us1 + iv0u2us2 + iv0u2

=
lg2T

vm
Fo

n=1

` S s1

ss1 − xndss1 + s1
*dss1 − s2dss1 + s2

*d

−
s2

ss2 − xndss2 + s2
*dss2 − s1dss2 + s1

*d
+ H.c.D

−
s1 + s1

* + s2 + s2
*

ss1 + s1
*dss2 + s2

*dss1
* + s2dss2

* + s1dG , s74d

where againxn=2pnT/". At high temperaturesT→`d we
have

sqqs`d = Jq`q`
= −

lg2T

vm

s1 + s1
* + s2 + s2

*

ss1 + s1
*dss2 + s2

*dss1
* + s2dss2

* + s1d
,

s75d

which is positive because Ress1d,0 and Ress2d,0.
At low temperaturesT→0d the following expression is

obtained:

sqqs`d = Jq`q`
=

l"g2

2vm

iss1
*s2

* − s1s2d
ss1 + s1

*dss2 + s2
*dss1

* + s2dss2
* + s1d

,

s76d

which is positive since Imss1s2d.0 up to the leading order
of l. In the weak-coupling limitl!1, Eqs.s75d ands76d are
reduced to the known formulas

sqqs`d =
T

mv2

and

FIG. 2. Calculated time dependence of diffusion and friction coefficients form=50m0 and"ṽ=3 MeV atT/ s"ṽd=0.033sleft sided and
T/ s"ṽd=0.33 sright sided. The results leading to the friction coefficientslp/ ṽ=0.17, 0.33, 0.50, and 0.66 are presented by solid, dashed,
dotted, and dash-dotted lines, respectively.
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sqqs`d =
"

2mv
,

respectively.
Due to lqÞ0 andDqqÞ0, the equation for the reduced

density matrixsor the Wigner probability distribution func-
tiond has the Lindblad structure. The positivity of the density
matrix holds for any initial states even if the asymptotic fric-
tion and diffusion coefficients in the coordinate and momen-
tum are used in the master equations35d under the condition
that the density matrix be initially positive.

The symmetric correlation function in coordinate has the
following structure:

sqtqt8
= AtAt8sq0q0

+ BtBt8sp0p0
+

"lg2

4pmv

3o
i j
E

0

`

dv0
v0 cothf"v0/s2Tdgfci jst,t8d + c ji

* st,t8dg
fg2 + v0

2gfsi + iv0gfsj
* − iv0g

,

s77d

where

ci jst,t8d = Ct
iCt8

j* + C0
i C0

j*eivnst−t8d − Ct
iC0

j*eivnt8 − C0
i Ct8

j*e−ivnt.

The asymptoticst@ t8.0d symmetric correlation function

sqtqt8

as =
l"g2

2pvm
E

0

`

dv0
v0 cothf"v0/s2Tdgcossv0ft − t8gd

us1 + iv0u2us2 + iv0u2

s78d

has a nonexponential powerlike decay behavior at the zero-
and high-temperature limits:

sqtqt8

as sT → 0d → − l"g2

2pvmus1u2us2u2st − t8d2 <
− l"

2pv3m

1

st − t8d2 ,

s79d

sqtqt8

as sT → `d → ilg2Tss1
*s2

*fs1 + s2g − s1s2fs1
* + s2

*gd
pvmus1u4us2u4st − t8d2

<
− 2lT

pmv4

1

st − t8d2 . s80d

This is related to the pure quantum nature of the interaction

FIG. 3. Calculated time dependence of diffusion and friction coefficients form=448m0 and"ṽ=1 MeV at T/ s"ṽd=0.5 sleft sided and
T/ s"ṽd=1.5 sright sided. The results leading to the friction coefficientslp/ ṽ=0.5, 1.0, 1.5, and 2.0 are presented by solid, dashed, dotted,
and dash-dotted lines, respectively.
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FIG. 4. The calculated asymptotic diffusion coefficients as functions ofT/ s"ṽd sleft sided and lp/ ṽ sright sided for m=50m0 and "ṽ
=3 MeV. The dependence on temperature is presented forlp/ ṽ=0.17 ssolid linesd, 0.33 sdashed linesd, 0.50 sdotted linesd, and 0.66
sdash-dotted linesd. The dependence onlp is presented forT/ s"ṽd=0.033ssolid linesd, 0.17 sdashed linesd, and 0.33sdotted linesd.

FIG. 5. The same as in Fig. 4, but form=448m0 and"ṽ=1 MeV. The dependence on temperature is presented forlp/ ṽ=0.25 ssolid
linesd, 0.75 sdashed linesd, 1.25 sdotted linesd, and 1.75sdash-dotted linesd. The dependence onlp/ ṽ is presented forT/ s"ṽd=0.5 ssolid
linesd, 0.75 sdashed linesd, 1 sdotted linesd, and 1.5sdash-dotted linesd.
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between the collective and heat bath subsystems: each act of
interaction must consist in the annihilation of a quantum in
one subsystem and its creation in another subsystem. Note
that the resultss79d and s80d do not depend ong.

VI. ILLUSTRATIVE CALCULATIONS OF TRANSPORT
COEFFICIENTS FOR THE FC OSCILLATOR

The diffusion and friction coefficients depend on the pa-
rametersv, l, andg. The value ofg should be taken to hold
the conditiong@v. We set"g=12 MeV. The values ofv

and l are fixed by given certain asymptotic values ofjs`d
andlps`d:

j = js`d = mṽ2, lps`d = lp.

We consider the case of a small massm=50m0 sm0 is the
nucleon massd and a large value"ṽ=3 MeV and the case of
a large massm=448m0 and a small"ṽ=1 MeV. As shown
in Fig. 1,Jpp, Jqq, andJqp start from zero att=0 and in some
time reach the asymptotic values which coincide with the
asymptotic values of the variances as follows from Eqs.s60d.
The time dependences of the friction and diffusion coeffi-

FIG. 6. Form=50m0, "ṽ=3 MeV and the indicated tempera-
tures, the calculated asymptotic diffusion coefficients are shown as
functions ofg / ṽ at lp/ ṽ=0.33 ssolid linesd, 0.66 sdashed linesd,
and 1.33sdotted linesd. The values of “classic” diffusion coeffi-
cientsDpp

c / sm"ṽ2d are presented by the corresponding arrows.

FIG. 7. The same as in Fig. 6, but form=448m0 s"v
=1 MeVd andlp/ ṽ=0.5 ssolid linesd, 1 sdashed linesd, and 2sdot-
ted linesd.

FIG. 8. Form=50m0, "ṽ=3 MeV, and the indicated tempera-
tures, the calculated asymptotic variances are shown as functions of
g / ṽ at lp/ ṽ=0.33ssolid linesd, 0.66sdashed linesd, and 1.33sdot-
ted linesd. The values of variances calculated with the “classic”
diffusion coefficientsDpp

c are presented by arrows.

FIG. 9. The same as in Fig. 8, but form=448m0 and "ṽ
=1 MeV. The calculations are performed forlp/ ṽ=0.5 ssolid
linesd, 1 sdashed linesd, and 2sdotted linesd.

KANOKOV et al. PHYSICAL REVIEW E 71, 016121s2005d

016121-18



cients are shown in Figs. 2 and 3 for these cases. The diffu-
sion and frictionlp coefficientsDpp, Dpq, and lp, respec-
tively, are equal to zero at initial time. After some transient
time the coefficients take asymptotic values. The transient
time increases withm andlp. The values ofDpp andlp are
positive att.0. During a short initial time interval the value
of Dpq is positive and becomes negative later on.

The dependences of asymptotic values of the coefficients
Dpp and Dpq on T and lp are shown in Figs. 4 and 5.Dpp
depends nearly linear onlp andT in the intervals considered.
For largerṽ in Fig. 4, the dependence ofDpp on T is rather
weak because of the importance of quantum effects. With
increasing temperature the absolute value ofDpq decreases
approaching to zero in the limitT→`.

The dependences of the calculated asymptotic values of
Dpp andDpq on the parameterg are shown in Figs. 6 and 7
for various lp and two differentT. The dependence ong
becomes steeper with increasing resultinglp. For "g
.7 MeV, the value ofDpq is expected to be negative. For
comparison, we show the “classic” values

Dpp
c = 0.5"lpmṽ cothf"ṽ/s2Tdg

to demonstrate the resonability of the calculations with the
chosen parameters.Dpp

c is smaller than the corresponding

calculatedDpp. This difference increases withlp and ṽ, but
decreases with increasingT.

The dependence of the diffusion coefficients ong leads to
the dependence of the asymptotic variancessqq andspp on g
sFigs. 8 and 9d. As in the case of the diffusion coefficients,
the dependence ofsqq on g becomes steeper with increasing
lp. The asymptotic variancessqq

c andspp
c obtained with the

classic set of diffusion coefficients,Dpp=Dpp
c and Dpq=Dqq

=0, are shown in Figs. 8 and 9 as well. While, forT
=0.1 MeV, sqq,sqq

c for "g.5 MeV, we find, for large
temperatureT=1 MeV, sqq.sqq

c for "g,25 MeV. The
choice of"g=12 MeV looks reasonable for further applica-
tions in the case of"ṽ,5 MeV. In spite of a largerDpp than
the classic value, the difference betweensqq andsqq

c is quite
small due to the negativity ofDpq. Calculations of many
observables like the penetrability of a barrier and the local-
ization of a distribution in coordinate use often onlysqq.
Hence one cannot expect a large deviation of these calcu-
lated observables from the ones calculated with the classic
Dpp

c . Therefore, the wide use of the classic diffusion coeffi-
cients is justified.

The calculated asymptotic variances as functions ofT and
lp are compared in Figs. 10 and 11 with the asymptotic
variancessqq

c andspp
c . The deviation ofsqq andspp from sqq

c

andspp
c , respectively, increases withlp. While the difference

sqq−sqq
c increases withT, the differencespp−spp

c decreases
weakly. In the purely quantum regime"v@T, the value of
sqq is smaller thansqq

c . With increasingT or decreasing"v

FIG. 10. For m=50m0 and "ṽ=3 MeV, the calculated
asymptotic variancesspps`d and sqqs`d as functions ofT/ s"ṽd
sleft sided andlp/ ṽ sright sided are compared with the asymptotic
variances obtained with the “classic” diffusion coefficientsDpp

c

ssolid linesd. The temperature dependence is presented forlp/ ṽ
=0.17sdashed linesd and 0.66sdotted linesd. The dependence onlp

is presented forT/ s"ṽd=0.033 sdashed linesd and 0.33 sdotted
linesd.

FIG. 11. The same as in Fig. 10, but form=448m0 and "ṽ
=1 MeV. The temperature dependence is presented forlp/ ṽ=0.5
sdashed linesd and 2.0sdotted linesd. The dependence onlp/ ṽ is
presented forT/ s"ṽd=0.5 sdashed linesd and 1.5sdotted linesd.
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the classic variancesqq
c underestimatessqq. However, the

difference betweensqq and sqq
c does not exceed 15% at

"lpø2 MeV. Therefore, observables related to the
asymptotic sqq can be obtained quite similarly with the
present and classic diffusion coefficients. The corresponding
comparison of the decay rate will be presented in paper II.

VII. SUMMARY

The generalized Linbland equations with nonstationary
transport coefficients are derived from the Langevin equa-
tions for the case of nonlinear non-Markovian noise. The
equations of motion for the collective coordinates are consis-
tent with the generalized quantum fluctuation dissipation re-
lations. Explicit expressions for the time-dependent transport
coefficients are presented for the case of FC and RWA oscil-
lators and a general linear coupling in the coordinate and
momentum between the collective harmonic oscillator and
heat bath.

The explicit equations for the correlation functions show
that the Onsanger’s regression hypothesis does not hold ex-
actly for the non-Markovian equations of motion. However,
under some conditions the regression of fluctuations goes to
zero in the same manner as the average values.

In the low- and high-temperature regimes we found that
the dissipation leads to long-time tails in correlation func-

tions in the RWA oscillator. In the case of the FC oscillator a
nonexponential powerlike decay of the correlation function
in the coordinate is obtained only at the low-temperature
limit.

The calculated results depend rather weakly on the param-
eterg in many applications. The value ofDpp

c underestimates
the asymptotic value ofDpp, but the asymptotic values ofsqq

c

and sqq are close due to the negativity ofDqp. The found
transient times forDppstd, Dqpstd, andDqqstd are quite short.

We plan to apply the elaborated formalism to the analysis
of experiments on nuclear subbarrier fusion, fission, and bi-
nary reaction processes. For example, the lifetime of a di-
nuclear system with respect to the decay can be calculated in
this approach. Also transient times in different nuclear dissi-
pative non-Markovian processes can be investigated. In pa-
per II we will study memory effects in the collective dynam-
ics of a quantum system, in the escape through a potential
barrier, in the capture into the potential well, and in the loss
of quantum coherence.
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