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Non-Markovian dynamics of quantum systems. |. Formalism and transport coefficients
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Generalized Langevin equations and fluctuation-dissipation relations are derived for the case of a nonlinear
non-Markovian noise. The explicit expressions for the time-dependent friction and diffusion coefficients are
presented for the case of general and linear couplings in the coordinate and momentum between the collective
harmonic oscillator and heat bath. The long-time tails of correlation functions are investigated in the low- and
high-temperature regimes of dissipation for different couplings. The Onsager’s regression hypothesis is dis-
cussed for the non-Markovian dynamics. The Lindblad theory is justified on the basis of the microscopical
model.
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I. INTRODUCTION present a fully quantum-mechanical derivation of general-

Different methods have been used to derive the equatiorié€d non-Markovian Langevin equations. These equations
of motion for a damped quantum oscillator in a quantum—fU”'” the quantum fluctuation-dissipation theorem as shown

mechanical heat bath on the basis of a microscopical descrifi? Sec. Il B. The time-dependent transport coefficients which
tion [1-8]. The thermal relaxation of a system was maimytake the memory effects into consideration are obtained for
restricted by the Markovian limitinstantenious dissipation, the general and linear couplings in coordinate and momen-
Gaussians-time-correlated fluctuationsand by the weak- tum between the collective harmonic oscillator and bath sub-
coupling limit between the oscillator and heat bath, and bysystems in Secs. Il C and IV. The microscopic justification of
high temperatures. If the dynamics of the system is very fasthe Lindblad axiomatic theory is provided in Sec. lll. In Sec.
a colored noise and nonlocal dissipation should be assumel.we discuss the dynamics of the fully couplé€C) normal
There are many systems that cannot be described by a Maand inverted oscillators, and free motion. The analysis of the
kovian process: for example, the case of a low bath temperdiarmonic oscillator in the rotating-wave approximation
ture, particularly if the dynamics involves tunneling transi- (RWA) is done in Sec. VI. The results of illustrative numeri-
tions through the potential barrier. In many new devicescal calculations of diffusion and friction coefficients and
needed for the emerging fields of nanotechnology and quarvariances for FC oscillator are presented in Sec. VII.

tum computing the non-Markovian effects are very impor- A second paper follows this paper which is devoted to the
tant. The question of the behavior of the dissipative quantuntreatment of the escape rate from the metastable potential as
system beyond the weak-coupling and high-temperature limwell as the capture probability into the metastable well with
its has raised interest in simple exactly solvable modelghe time-dependent transport coefficients obtained for the FC
[7,9-15. In these models the heat bath is assumed to be a sescillator.

of harmonic oscillators interacting linearly in coordinates

with the collective harmonic oscillator subsystem. The den-

sity and coupling constants of the environmental modes are IIl. COUPLING OF GENERAL FORM

chosen in such a way that the equations of motion take the A, Generalized non-Markovian Langevin equations

familiar classical forms. Important progress beyond the limi- . . :
P prog y In order to derive the quantum non-Markovian Langevin

tations mentioned above was made in REfs12,13,15 us- : d the time-d d fici ¢
ing the path integral technique. For instance, the nonexpggduations and the time-dependent transport coefficients for a

nential decay of correlation functions was found in the |0W_collectlve subsystem, a suitable microscopic Hamiltonian of

temperature range. However, the complicated structure of th@e vvhole systenithe heat bath plus collective subsys]em
P d P Iaas first to be formulated. In Reff16—1§ the following

path integral scheme makes even a numerical evaluation i o )
many cases very cumbersorfi#. There is still a need for amiltonian was suggested:
simpler, although approximate, equations of motion. The H=H,+Hy+ Hep,
present paper is an effort in this direction.

We use the Langevin approach which is widely applied to

finding the effects of fluctuations and dissipations in macro- He= pr+ U(a),
scopical systems. The Langevin method in the kinetic theory 2p(q)
significantly simplifies the calculation of nonequilibrium

quantum and thermal fluctuations and provides a clear pic- Hb:E ﬁwvblbvv
ture of the dynamics of the procefs,3]. In Sec. Il A we v
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Heo= 2 V(@ (b)+b) +IX Gapbl-b), (1 i _p )=l - 1,1) + 2orEP)

ho,
it . N : .
which explicitly depends on the collective coordinateca- - Zf dr ®T (e + (n)e 7],
nonically conjugated momentumm, and intrinsic heat bath a0
degrees of freedom expressed through the bath phonon op- (4)

erators of creatiom! and annihilationb,. Under the condi-

tion G,(q,p)={G,(a),p},=G,(q)p+pG,(q) the Hamiltonian
H is time reversible. The termsl,, H,, and Hg, are the i .

Hamiltonians of the collective subsystem depending on mass f,(t) = {by(o) + w—(I)(O)]e"“’vt,

parameterw(q) and potentialU(q), of the bath subsystem, v

and of the collective-bath interaction, respectively. The 1

model of heat bath is an assembly of harmonic oscillators e

with frequenciesv,. The coupling to the heat bath is linear in *0 ﬁ[ V(a(®) + G(a(V, P)]

the bath operators and corresponds to the energy being trans- ] ] )

ferred to and from the bath by the absorption or emission off We substitute Eqs(4) into Egs.(2) and, respectively,
bath quanta. The coupling term can have important conseeliminate the bath variables from the_equatlons of motion of
guences on the dynamics of the collective subsystem by afl'e collective subsystem, we obtain a set of nonlinear
tering the effective collective potential and by allowing en- integro-differential stochastic dissipative equations

ergy to be exchanged with the thermal reservoir, thereby

where

t
allowing the subsystem to attain the thermal equilibrium qzé{ﬁ—l(q),ph_}f dr{Kault, D,a(D}s
with the heat bath. For simplicity we consider here the two- 2 2Jo
dimensional collective reduced phase space. ¢
The system of Heisenberg equations of motion for the +lf dr{Keo(t, 7, p(D)} + Fy(t),
variablesq andp and the bath phonon operatdrsand bf, is 2Jo a

obtained by commuting them witH:

= 1" .
i 1 p=-Hiq@,p) - > f dr{Kywu(t, 7),0(7)}+
a=>H.al=2{u(@).p +iX G} (a,p)(b, ~b,), ’

1" .
+5 f dr{Kyc(t, 7). P} + Fyl0). (®)
0
o ) _ / To obtain Egs. (5), we disregard the terms of the
p_ﬁ[H-p]_ HC,q(qvp) Eyvv,q(Q)(bI+bv) second order in i [[G;’p(t),(.Z{(t/)],v;}'q(t/)],
| , [[GL®, 8],V ()], [[GL,4(0), 8], G 4],
-2 G y(@p)b-b,), 2 [[G0.4()].GL4t)],  [[G],1),p(t)].G,,t)],  and

[[G’V'q(t),p(t’)],G;,p(t’)]. This assumption, which is equiva-
lent to the trancation of the cumulant expansion after the
second order, allows us to consider only the dissipations
which are propotional todg/dt (linear dissipatioh and
dp/dt. In the literature the linear dissipation is mainly dis-
cussed 1-8]. In the case of linear coupling in the momentum
(G, are linear functions op) and arbitrary coupling in the
. i 1 coordinate(V, are complicated functions of)), Egs. (5)
b,= - [H,b,]=-iwb,+[-IV,(@) +G,(qp)]. (3 would be exact.

h h The collective Hamiltonian for the variablesand p in

Egs.(5) is

. i 1
bf = I%[H,b:i] =iob)+ 21V, (a) + Gy(a,p)],

Here, we use the following notation:ﬁéyq(q,p) ~ 1 ~
=R@.p)36, V., (0=V,qM)/oq,  and Gt Hl@p) =P P u@n.
=dG,(q(t),p(t))/dp. The solutions of EqH3) are

with the renormalized mass parameter

: t ’ 2
bi(t) +b,(t) = f(t) + f,(0) - ZZ;(Q) -~ f dfdf(Deett 2 Hq) = wHqt) - 22 [G—;L'ﬂ
v w,, 0 v w,,
- d(n)e et and the potential energy
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E N (Q(t))]2 (FqN =(Fp» =0, )

U(a(t) = U(q() - P

14

S N _ _ and nonzero second moments. Here, the synipel)) de-
The dissipative coefficients in Eq6) are recognized as the notes the average over the bath. The Gaussian nature of the
terms which are proportional to the operatorsand p [9]. random forces is endorsed in the case when the bath is

Thus, the dissipative kernels are treated as a set of harmonic oscillators or when the interac-
1 tion is the cumulative effect of a large number of weak in-
Keyt,?) = > —({G;p(t) V’Vq(r)}+sin(w [t- 1) teractions where a central-limit theorem can be applied

[1,3,7]. In order to calculate the correlation functions of the
fluctuations, we use the Bose-Einstein statistics of the bath:

~{G},0.G; ¢(Dhcosw [t = 7)),
L CEUOFL ) = (DT, (1)) =
KVG(t! T) == 2 %({G:},q(t)!G;,p(T)}+Coiwv[t - T])

14

V0,6, p(Dhsin(w,[t - 7)), (O ) = 8,,m,e ),
Ku(t, ) = 2 ([{v SOV (D +{GL (0,6l (Dh] (EOF, ) = 8, (0, + e, (9
X codw,[t—7]) +[{V,, (t) G’q(r)}+ with occupation numbers for phonons depending on tem-

peratureT: n,=[expfw,/T)-1]"%

Thus, we have obtained a set of generalized nonlinear
quantum Langevin equatior(§). The presence of the inte-
gral parts in these equations indicates the non-Markovian
character of the system. As one can see, the dissipative ker-
nels have the form of a memory functions, since they make
Since these kernels do not contain the phonon occupatioifie equations of motion at timtedependent on the values of
numbers, they are independent of the temperalucé the g and p for previous times. If kernels are rapidly decaying
heat bath. The temperature and fluctuations enter in thiinctions, Egs(5) have a short memory. It should be noted
analysis through the specification of the distribution of thealso that for the reduced system the velocity is not necessary
initial conditions. In Eqs(5) the operators of random forces to be proportional to the momentum. Equatias can be

(G0 V] (D} Isin(w, [t - 7).

Kealt,7) = 2 —{G (.G, p(D}codw,[t=7]). (6)

in the coordinate and momentum, solved numerically in the general case.
In Refs.[7,9] the quantum Langevin equations were de-
Fq(t) = > Fit) = i> G’V,p(t)[fl(t) -f,0], rived for a linear-ing system-bath coupling. In Relf9] the
v v collective potential was a harmonic oscillator. The equations

of motion (5) were obtained for more general collective
Hamiltonian(arbitrary coordinate-dependent mass parameter

— v — ’ T : ’
Fo) = > Fo®=- > Vv,q(t)[fv(t) ]2 Gq(t) and more complicated potentiadnd coupling between col-
! ! i lective system and thermal bath. The consequences of this
X[fZ(t) -f, (0], (7) fact is that the Eqs(5) contain additional random forcés,

and dissipative kernelXyg, Kgy, and Kgg. As will be
play the role of random forces in the coordinate and momenshown, these terms are responsible for the appearance of
tum and depend oq(t) andp(t) and on the initial conditions  additional friction and diffusion coefficients, and Dqq
for the operators. Following the usual procedure of statisticatontrast to Refd.7,9], the dissipation and random forces are
mechanics, we identify the operatdf§(t) andF(t) as fluc-  functions of the coordinate and momentum in our case. The
tuations because of the uncertainty in the initial conditiongnteraction between the bath and collective system renormal-
for the bath operators. To specify the statistical properties ofzes the potential energy as well as the mass parameter.
the fluctuations, we consider an ensemble of initial states ifEquations(5) can be applied to the systems coupled linearly
which the operators of the collective subsystem are fixed aih p and arbitrary inq with the bath.
valuesq(0) andp(0) and the initial bath operators are drawn
from an ensemble which is canonical with respect to the
collective subsysterfi9]. The initial distribution is then the

conditional ~ density ~ matrix po({b,b,}|(0),p(0)) The fluctuation-dissipation relations are the relations be-
=exf{~3, i, (b)-i®*/ w,)(b,+i®/w,)/TI/Z(T), where tyeen the dissipation of a collective subsystem and the fluc-
Z(T) is conditional partition function. In this ensemble the tuations of random forces. Those relations express the non-
fluctuationsF(t) andFy(t) are distributed as Gaussians and equilibrium behavior of the system in terms of equilibrium or

have zero average values quasiequilibrium characteristics. They ensure that the system

B. Fluctuation-dissipation relations for general coupling
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approaches the state of equilibrium. Using the prope(8gs S ¥ (1) = 2TK (L t)
and (9) of random forceq7) and neglecting terms dd(#) PR ViR
[this is consistent with the fact that the double commutator

terms in Egs(5) are disregardddwe get the following sym-

metrized  correlation  functions (k,k'=q,p) ¢y, (t,t") 2 drgtt) = 2TKgg(t t'). (15)
=(FROF (1) +F (1) FD): g
¢qp(t t')=[2n,+ 1](- {G, p(t) G/ q(t )}codw,[t—t']) These classical realations contain only the thermal fluctua-
/ tions. Our formalism naturally leads to the generalization of
+{G] (1), V) o(t}isin(w,[t = 1'])), Y g

classical fluctuation-dissipation relation by including the
quantum fluctuations in addition to the thermal fluctuations.

Bpg(tit') = =20, + 1](G, 4(1), G, ,(t")}scodw, [t~ t']) Since Eqgs.(5) and, following from them, the equations of
+{V, 4(1,G, ((thsin(w,[t—t']), motion for the collective coordinate and momentum are con-
na P sistent with the fluctuation-dissipation relations, our formal-
L) =[2n, + [V ().V. (t’ ism provides a basis for describing the quantum statistical
¢pp( ) [ n, ]([{ q( ) Vq( )}+ effects of collective motion.
+{G, 4(1),G, 4(t")}]codw,[t - t'])
+[{V, q(D, qu(t Ve — {qu(t) \ va(U)}] C. Derivation of nonstationary transport coefficients for the
xsin(w.[t-1']) harmonic oscillator
Assuming in Egs(5) the functionalsg, V, ,, G, and
dgq(tt') =[2n, + 1]{G’V,p(t),G’V,p(t’)}J,cos(wV[t -t']). G, »p Weakly dependent op andq in the con5|dered mterval

(10) of t and replacing them by their average values, we can ob-
tain a set of generalized non-Markovian equations which can
The disregarded terms would lead to relations between thetse solved analytically. Approximating locally the renormal-
in addition to Egs(10). Using Eqs.(6) and (10) and taking  jeq potential by a harmonic oscillatdy= 6q2/2, and apply-
into consideration that g, +1=cothifiw,/(2T)], we obtain jng the Laplace transformatiof to Egs.(5), we obtain the
the quantum fluctuation-dissipation relations following set of linear equations for the transforms:

tanH7w,/(2T)] ,
D A(HSL +Kov(9)] - PO + sKo(S)]
=q(0)[1 +Kau9)] — p(0)Kga(s) + Fy(9),
hw
E bpqtit ,)M =Kya(tt'). (12)
' A(S)[ 5+ SK(9)]+ P91 ~Kya(s)]
t ho /(2T =q(O)K 0)[1-K Fo(s). 16
2 S Lt) antf w{( )] _ = Ktt)), (13) q(0Kw(s) + p(0)[1 ~Kyg(s)] + Fy(s).  (16)
For the solution of this system of equations, one should find
b l(2 the rootss; of its determinant:
S g L (LAY

v

. o . d(s) = 71 +Ka(9)][1 — Kya(9)] + [6+ SKnA9)]
The validity of the fluctuation-dissipation relations means
that we have properly identified the dissipative terms in the X[/ +sKsa(s)]=0. 17
non-Markovian dynamical equations of motion. Quantum
fluctuation-dissipations relations of a similar form have beenThe explicit solutions for the originals are
obtained before in Refl9] and references therein for the
simple cases of FC and RWA oscillators. We generalized the t ~
guantum fluctuation-dissipation theorem for the case of a q(t):A1q(0)+Btp(O)+J dr[CFy(t-7) +CFy(t- 7],
more general form ofH.. The quantum fluctuation- 0
dissipation relations differ from the classical ones and are
reduced to them in the limit of high temperatufe(or %

t
—0) p(t) = Mq(0) + Np(0) + J drfLFyt=1) +LFyt-1],
0
2 ditt’) = 2TKau(L,), 18

> Brtt) = 2TKyg(t 1), where the time-dependent coefficients are denoted as fol-
v lows:
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1 +Kay(9)[L - Kya(s)] + [1/5 + sKGG(s)]KW@]

A=l _l{ d(s)

. E_{ o1~ Kya(9T[L + K9]+ [3+ SKyu9)Koal®) ]
t d(s) '

o zrl[l—des)]] N _[3[1+Kev<s>]] i _{s[l—des)]}
B"“[ R A R R At = |

. s[1+KGv<s>]] - _1[1fﬁ+sKGG<s)] _ _1l75+sl<w<s)}
Lt‘ﬁ[ as | TF as ) A Tae

Here, £71 denotes the inverse Laplace transformation and o = 044 +BBuo, o, +AB o, , +BAG

Kyu(9), Kag(s), Keu(s), and Kyg(s) are the Laplace trans- e = A gt ™ BB oy T Bt Ty * B o

forms of the dissipative kernels. The subscriptnd 7 de- +Jgq,

note the time dependence. The exact solutigs and p(t)

in terms of rootss, can be given by the residue theorem. Opp, = MMy g+ NiNv oy oo+ MiNpog o + NeMy oy o
Using the time dependence qf and p, we obtain the

values{q(t)) and{p(t)) averaged over the whole system, + o

(a(b)) = ACa(0)) + By(p(0)), Tapy =AM Ogoa * BN 0o, + A, + BrMy 0,

+ Jq[pl”
= =+ —
(p(1)) = Ma(0)) + N(p(0)), (19 Tpay = MiAr 0qq, + NiBr o p, + NeAv o g + MiBrog
. . +Joq,, 20
and  correlation  functions aqq, =(q(Oat"),  opp, Pl (20

=(POP(t")), ogp, =(a(t)p(t')), and o4, =(p(t)a(t")): where

t re - - .
Joay = fo fo drdr'[C.Colgt— 7t = 7) + C.Colgp(t—7t' = 7) + C.Colpy(t — 7t = 7) + C.CL 1 (t— 7 t' = 7')],
t t/ - - —
Jppy = JO Jo drd7r'[L L lpgt— 7t =7 ) + L Ll gt =t = 7)) + L LIt = 7t = 7)) + L LIyt - 7t = 7)],
t i’ - — -
Jopy = fo fO drd7'[CL It -t =7 )+ CL Iyt = 7t' = 7) + C Ll py(t = 7t' = 7) + C Ll ot = 7t = 7)],

t i’ - — -
thqt, = fo fo ddr'[L.Colpgt—7t' = 7))+ LColgt— 7t = 7) + LColg(t - 7t = 7) + L.Col ot - 7t" = 7)]. (21)

The symbol (-5} in lgyt,)=(F4()F(7)), L, 7) In order to determine the friction and diffusion coeffi-
=(Fp(OFp(7), gt 1) =(Fp(t)Fo(7), and  lg(t,7) cients, we consider the equations for the first and second
=(F4()Fy(7)) means an average over the whole system. moments, and correlation functions. Making derivativet in
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of Egs. (19 and (20) and simple but tedious algebra, we
obtain the following equations:

d
—(q(t)) = — Nq4(t t)) + —{(p(t
1400 = A 0(E0) + 0,
d
d—t<p(t)> = - &0)(q(t)) — Ap((p(t)) (22)
and
d B 1
ataa =T Ag(t)ogq, + %‘Tptqy + Dggpr»
d
at%eee =7 Mo opp, = W agp, + Dpp,»
d B 1
a‘fqtpy -~ )‘q(t)‘fqtptr + %Uptptr + Dqtptr’
d
d_to-ptqt’ =" )\P(t) Uptqt’ - §(t) thqt’ + Dptqt” (23)
where
N; — B M
)\q(t) A( t ~ BVt (24)
BM- AN,’
AN, - BM
Npl(D) = M1 (25)
BiM; — AN
AB, - BA
1/m(t) = AB = BA (26)
BtMt - AtNt
MtNt B NtMt
t)y=—————, 2
€0=5 0T AN 27)
qu G
it
Dqtqt, = )\q(t)thq‘, - Wt)thq" ?, (28)
) Ay,
Dptpt’ = )\p(t)thpt, + g(t)\]qtpt, + T1 (29)
dJ
1 qlp(’
Dqtpt' = )\q(t)thpt, - m‘]ptpt’ + T, (30)
B dJpg,
Dpge = o pg + &0Jgq, + —— (31)

Here, m(t) depends orjx through Eq.(26) and an overdot
means time derivative.

The Onsager’s regression hypothesis states that the re-
gression of fluctuations is governed by macroscopical equa-

tions describing the approach to equilibrid®,6]. One can
derive from Eqs(22) and(23) the equations

PHYSICAL REVIEW E 71, 016121(2009

d2
) + [ N0+ A (D) + Eg ] <) + {%
FAGONGD +AgD) A (t)%](q(t)) 0,
i m(t) &(t)
O (NN P
AN $hg0 200 | |0
d
+ )\p(t)] Dqtqt, - mDptqt, - d_thtqt’ =0.
The last equation can be rewritten as
d’ m(t) &(t)
Eo-qtqt’ |: (t) A (t) + wi| d_t GGy * |:%
F (DA + Aq(t) + xq(t)%}aqtqt, =0,

where 5qtqt’:thqt’_thqt" Due to the nonzero coefficients
D'ﬁ'v (k,I=g andp) (or thqt,), the equations for the correla-

tions are not identical to the equations for the average values
and the Onsanger’s regression hypothesis does not hold ex-
actly for the non-Markovian dynamics of the damped har-
monic oscillator. In particular case ©f=0 from Egs.(21)
and(28)«31) we obtainDy; ,=0 andJ,q,=0, which means
that the Onsager principle is valid the whole time; 0. In
Ref. [19] the validity of the Onsager principle was demon-
strated at the same conditiar=0.
When we set=t’' in Egs.(23), we obtain the equations

for the variances in the coordinaie,(t)=(q%(t))—-(q(t))?

=04q, -(q(t))> and in the momentum o(t)=(p*(t))
—(p(t))2 T, —(p(t))2 and the one for the mixed var-

iance Tap()=3(PMa() +a(HP(t) = (p(H))(A(t) = 3 (o,
+0pq) ~(P()XA(M)):
2\ g(D)ogq(t) +

(.qu(t) == qu(t) + 2qu( )

()

D) = = 20D app(t) = 2£(t) ogg(t) + 2D D),

b'qp(t) == D\p(t) + )\q(t)]o'qp(t) - &(t) qu(t) t— O'pp(t)

(t)
+2Dg(1). (32

From the structure of Eq$22) and (32) it is seen that the
dynamics of system is determined by the nonstationary fric-
tion coefficients\y(t) in the coordinate ana,(t) in the mo-
mentum, inverse mass parametemtt), stiffness coefficient
&(t), and diffusion coefficients in the coordinate,

1 1.
Dyq(D) = )\q(t)\]qtqt - M(Jq‘p‘ + thqt) + EJ (33

GG’

and in the momentum,
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&) 1 Only the diffusion coefficienD,, in momentum is often
Dpp) = M) Jpp, + 7(‘]qtpt +Jpa) * PR (34 used in applications. The other diffusion coefficieBts and
Dpq in the coordinate and mixed in the coordinate and mo-

and the mixed diffusion coefficient: mentum are assumed to be zero. It was shown in Refs.
1] A0 + A [20,21] that the tunneling through a potential barrier, d_ecay
Dplt) = _[_P_P_(Jqp +Jpq) + E0Igq — —Jop of a metastable state, and decoherence depends crucially on
2 2 e ttom(t) the transport coefficients. With the diffusion coefficient in
1. ) the coordinate the decoherence increases slower than in the
+ E(‘]qtpt+‘]Ptqt)]' (35 case withDy,=0. The penetrability of a barrier is larger in

the case ofDy,#0 due to a stronger coherence between

Therefore, we have obtained the Markovian-tyiecal in  different states.
time) equations for the first and second moments, but with a
general form of transport coefficients which explicitly de-
pend on time. It can be shown that the appropriate microca-
nonical equilibrium distribution is achieved in the course of The equations of motiof22) and(32) for the expectation
the time evolution. At— c the system reaches the equilib- values and variances of the collective coordinate and mo-
rium state(op,p=0qq=04p=0) and the asymptotic diffusion mentum can be also obtained from the following master

D. Relationship with the Lindblad theory

coefficients can be derived from E@®2): equation for the reduced density matfit):
1 i~ iNg(t) inp(t)
qu(OO) = )\q(OO)(qu(OO) - Woc)o-qp(oo)! p - %[Hop] + Zfl [pv{qvp}+:| - Zﬁ/ [qv{pvp}+]
Dgqg(®) Dpp(t) Dgp(t)
Dpp(%) = Np(20) app(2) + E(22) (), - —;‘igz—[p,[p,p]] - —%‘;—[q,[q,p]] + —";fz—([p,[q,p]]
5 1[ N +[a,[p,p]D (37
)= — o0) + o0 o) + [o¢] o0
an(*) 2 [Np(22) + A(2) Jorgp() + (%) 7<) or from the following Fokker-Planck-type equation for the
1 Wigner reduced phase-space distribution funciidig, p,t):
- _‘Tpp(m)} : (36) : oW oW J 3
m() W:—L—+§(t)q—+>\p(t) (pW) a0 (qW)
Comparing EQgs.(33—36), we obtain thatogy()=Jg q , m(®) oq P ap aq
1 .- 2 2
Opp(®)=Jp o, and oy () =5(Jq p +Jp ). If 0gy(*2)=0 in FW PW PW
Egs. (36), then the asymptotic diffusion and friction coeffi- + Dydt P +Dpf® ap? +2Dgi0) aqap’ 39

cients are connected by the well-known fluctuation-

dissipation relations Here, for the general coupling we assume again that the fric-

tion and diffusion coefficients depend érand on the mo-

Dygq(®) = Ng(20) q(*), ments but not omp andg. In the case of linear coupling they
depend only ort and this assumption is not necessary. De-
D, (20) = Ny () 0 (), spite the generally non-Markovian nature of the dynamics of
PP P PP the open system defined by EdS), the evolution ofp and
connecting diffusion and damping constants. W is governed by differential equations local in time. The

It is strightforward to show that the energy of the system,memory effects are encoded in the time-dependent transport
coefficients. The general coupling with the environment re-

2 2
E(t) =<ﬁc(t)> =9 () + (p(t)) + g(t)o (0 +{a®) , sults in the friction and diffusion coefficients in the coordi-
2m(t) 2 nate and momentum. This is the consequence of the exis-

tence of random forces in the momentum as well as in the
coordinate. It is easily seen that E¢37) and(38) are simi-
lar in structure to the corresponding Lindbland equations
m() 2m(t) with constant transport coefficienfR0-25. The Lindblad
theory describes the Markovian dynamics after the decay of
oo +(q(t)?  Dpyt) fast transients and establishes the most general form of the
2 * m(t) + £(0)Dgq(1). generatorL” of dissipative quantum dynamigs=L"p pre-
serving the positivity of the density operator under certain
One can see from these equations that for the harmonic ogonditions of the friction and diffusion coefficients. Our Eqs.
cillator dissipation rate increases with(t) and A,(t) but (37) and (38) are shown to be a generalization of Lindblad-
decreases with increasirigy,(t) andDg(t). For the case of type equations in the case of nonstationary non-Markovian
inverted oscillators¢ <0, the friction in coordinate,(t) in-  transport coefficients. So our model can be seen as a micro-
creasesE but diffusion coefficient in coordinat®y,(t) de-  scopical justification of the Lindblad theory for open quan-
creases it. tum systems.

is changed in accordance with the equation

: 2
E(t)=- [ZAp(t)+m]o )+ {p(®); —[2n4(1)E(D)

+ E(1)]
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E. Overdamped limit Hep = qz a,,(b:r,+ b,) + ipz gv(bz_ b,), (43)

If friction in the momentum becomes very largk(t)
LU : .
>&(t)/m(t)], the motion becomes overdamped. This MO-yhereq, andg, are real coupling constants. In this case we

tion is marked by equilibrium values fdp(t)), opy(t), and  get a set of Langevin equatioiis) where the renormalized
ogp(t)—i-e., (d/dt)(p(t))= o) =0gp(t)=0. Then, the equa-  qo|jective HamiltoniarH,(q, p) contains
tions for(q(t)) and oy4(t) in Egs.(22) and(23) are reduced

2
© ptEpt-2X ﬁg(;
oD mONGON(D v Ty
a0 =v == e R ), and
2
~ _ ) av
T = LED + MOAGON(D) 0o+ D20, (39 U(@)=U(@ -q E e

M)A (1)

whereu(t) is the drift coefficient and the diffusion coefficient
in the coordinate is

Here, we takeu independent of). The operators of random
forces and dissipative kernels in the equationsddy and
for p(t) are

MAONOA() +A(B)] |
In the limit of A 4(o0) =Dy() =D44(°°) =0 we obtain the well-
known relation’ * * Fo) = == 2 a[fI(1) +1,(0)] (44)

D4(%2) = 2D pg(xe) M=) (=) . and
The asymptotic value of the variance is obtained from Eq.

(41) as follows: Koult, ) = = Kyg(t, 1) =2,
Dpp(>2) + 2M(2)Ay() Dgg(2) !

Dgo(t) = 2| Dgq(t) +

a9,

sin(w,[t = 7]),

14

O-qq(OO) = oo [oe] oe] o0 o¢] oe] o0 2
mM(e0)[Ap(%) + Ng(0) (%) + m(22)Ag(2)\ ()] Kea(t,7) = 25 g coso ft- 1),
M(22)Ap(22) Dgg(*) m S ho,
(o) + () (o2 p(o2) ,
The quantum variancg@l) can significantly deviate from the Kt 7) =2, hC:: codw,[t— 7]). (45)

classical onerg'q(oo):T/E, especially in the case of smdll
Equations(39) are the same as ones obtained from the It is convenient to introduce the spectral dengty,) of
equation for the position distribution functidt(q,t) (here,q  the heat bath excitations, which allows us to replace the sum

is the c numbey: over different oscillatorg by an integral over the frequency:
_ p 1 2 Ev---—>f-§dwoD(w0)---. Let us consider the following spec-
P=-—[v(t)P]+ =DX()—P. (42)  tral functions[9]:
S wf_ o7
o o
. . . . . } D v - T
This equation is a quantum version of the classical Smolu (wo) fw, P

chowsky equation for the coupling of general form. The
quantum Smoluchowsky-type equation was obtained in Ref.

2 2
[26] by another method for the anharmonic potential and D(wo)M:g— e ,
linear coupling in coordinate. ho, 7Y +wg
If the transient times oiDg‘a(t) and v(t) are equal or ¥
smaller than the characteristic timeX}() of equilibrium D(wy) a9, _ag (46)

of the momentum distribution, then it is a good approxima-
tion to use the asymptotic quantum diffusion and drift coef-
ficients, Dgg(oo) and v(=), respectively, in the equations of
motion.

where the memory time/* of the dissipation is inverse to
the phonon bandwidth of the heat bath excitations which are
coupled with the collective oscillator. This is the Ohmic dis-
sipation with a Lorenzian cutoffDrude dissipation[1,3,7].
The relaxation time of the heat bath should be much less than
the period of the collective oscillator—i.ey> w.
Using Eqgs(45) we obtain the dissipative kernels and their
For a system with linear coupling, the terHy, of the  Laplace transforms in forms convenient for the further cal-
HamiltonianH (1) can be written as culations:

Ill. APPLICATION TO LINEAR COUPLING IN THE
COORDINATE AND MOMENTUM WITH
A SPECIFIC BATH
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2a iN(w[t— 7
Kou(t,7) = = Kya(t,7) = gyzf d Osm(#[tz]),
)
In(s?%/
Kew(s) = —Kya(s) = agjszn_( ),2;/2)',

Keo(t, 7) = g2ye 7t

Koa(S) = M
+y

Ky(t, 7) = a?ye M7,

2

Kvs) = (47)

In the limit of large bandwidthy— o, Egs.(47) are reduced

to
2ag (i)
t—7/"

Kealt, 7) = 2025(t - 7),

Kyt 7) = 2a28(t - 7), (48)

where P denotes the principal value. Téunction kernels
mean an instantaneous Markovian dissipation.

Kaut, 1) = = Kyg(t,7) =

A. Harmonic oscillator
In the case of a damped quantum oscillatdfq)
= nw’q?/2 [U(g)=69%/2] we obtain the solution$18) for

A= é Bi{si|:si
+gzys>}é‘,

+ya2<3j7
M
MEB. S+7]{S+7+

{9

(<-7)

Mt:_gﬁBt-

N;= Eﬁ.[ {s+y+ W?ai) In(%” + g% a5 + )

+ a%]]eﬁt,

4 4 4
Ci=> Ci=L=> L= Bsls+ y][s+ y
i=1 i=1 i=1

().

PHYSICAL REVIEW E 71, 016121(2009

4 4

~ ~ -+

C=2Ci=2 Bls+ 7]{3ﬁ7+92y‘54}e5‘,
i=1 i=1

4

- Bls +yllds + ) + a?yslet. (49)
i=1

4
Lt:E th:
i=1

Here, = uw?- a2y and the constants

1
(81— S)(s1—s3)(S1—8y)

B1=

1
(- 5)(8, ) (2= 8y)

Bo=

1
(3= S1)(S3= %) (3= Sy)

Bz=

1
(S4=S)(S1—S) (84— S3)
=1, 2, 3, and #of the

ezl 5

+ 9275} [8(s+7) +a?ys] =0,

Ba=

are expressed in terms of rods(i
determinan{see Eq.(17)]

(s+y)%d(s) = SZ[S+ y+

(50)

in which the termgay? In(s?/ y?)/ w(s—vy) was disregarded.

The expressions for time-dependent transport coefficients

follow from Egs. (24—(27) and (33)—(35) in which we
should set

_h ]
Joq, = )/22 ——— 5 LGjj(t) - Gfj()cod wqt)
Gt 75 Jo
- G; (t)sin(wot)], (51)
Gjj(t) = g j[gz(CiCj +CLCl) + az(a?:{ + 606{))]
+ 2b;;ga[CICl + C,Ch],
G (1) = [ gA(CiCh + C,Ch + o*(CiCh + CHCH]
+ 2bga{ CiCh+ C,Cll,
G (1) = by[ g*(CiCh - C,Ch + o*(C{Ch - CHCH]
- 2a;ga[C\Ch - C{Cl],
Zfzyz wol2n, +1]
Jop + I, = E f —[Pu )
-Pj (t)COS(wot) Pi®sin(wct)],  (52)
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Pij (t)= ai,-[QZ(C{L{ + CioL%)) + aZ(CitL{ + CIOLIO)] Hep = )\1/22 FV(aT + a)(b‘]r) +b,) = IZ)\TquE Fy(b:r/ +Db,).
+ bijga[citl-{ +Clh+ CIL + ChLy ), ' "
Here,a' anda are the annihilation and creation operators of

Pf (1) = 3;[g*(ClLy + ColD) + a*(CiLh + CoLh)] the quantum oscillator, respectively,’s real coupling con-
c stants, and. a parameter that measures the average strength
+b;jga{ CiLy + Colf + ChLy + ClLo], of the interaction. Inserting,=0 and a,=(2uwoN/A)YT,
=(k/A)NY?T, in Eq. (43) with «=(2uwh)?, we obtain a
Pisj(t):bij[gz(cit’lz{)_cio’[{)+a2(’éitLg)_’éi)L{)] set of Lf;mgevm equations for the damped quantum FC
o oscillator:
- a;ga[CiL{ - Col i + ChLy — ClLo]. . ot
Here, a(t) = T
o= SS; + w3 t
Lot en) p(t) = = Ba(t) - J drK(t= () + kF(D), (53
0
by = —(SJ% where
(s + wO)(sz + wp) \L/2
The expression for tha, , can be obtained from expression F(O) =Fpt)/ k=~ ?2 T +,0],

for the Jyq by the following replacementsC;—L{ and C,

— L. As in the case of the general coupling Hamiltonian, the re\ter, ot
linear coupling in the coordinate and momentum gives us f.() =1 b,(0) + 720 q(0) Je™,
also nonzero diffusion and friction coefficients in the coordi- g
nate and momentum. The random forces are incorporated in

1/

2 2
the equations fop(t) as well as forg(t). So the equation for S= waw? - 2)‘;‘ > &
the reduced density matrix has Lindblad-type structure. For he 7 ho,
the given coupling, the fluctuation-dissipation relations are
exactly satisfied in the formgl1)—(14). 5

K(t—7) = Kyy(t, D/k? = 2—)2\
B. Inverted harmonic oscillator i fho,

For the potentiaU(q)z—Mw2q2/2~, we can apply all the  The set of equationé53) has the following solutiongsee

above formulas for, By, M, Ny, Gy, C;, Ly (Sec. I A), Jqq,, Egs.(18)]:

‘thpt’ anqutpt+Jptqt of the harmonic oscillator and obtain the t

transport coefficients by using Eq24)—(27) and (33)—(35). q(t) = Aq(0) + B;p(0) + « f dCF(t-17),

The only differences are that anothés —(uw?+a2y) and 0

the rootss; of the equation

codw,[t—7]).

t
a 2 = + + K -7),
S{sﬁ 0% m( i)} _ {Sﬁ y+gzys} p(t) = Mc(0) + Nip(0) fo driLFt-7, (59
m(s=y) \¥ I
~ where
X[~ 8y + uw’s]=0 1 1
should be used. B,=C,=—L 1[ — ]
iz &+ 2hwsK(s) + &l

C. Free motion

~ t
If U(g)=0, thend=—a?y ands are the roots of the equa- A= MBt+ KZI dBK({t-7= [1[
tion 0 !

gay? SVIP | sty ~
52[S+7+ m(s— ) In(?ﬂ _{T“LQZYS}Y%;:O' M= - uéB;,

We can apply all above results of Sec. Ill A to obtain the
transport coefficients.

s+ 2hwK(s) }
&+ 2hwsK(s) +~5/,u ,

N,=L,= uB,. (55)

V. FC OSCILLATOR Here, K(s) is the Laplace transformation &€(t). If we re-
' write the sumX,, as an integral over bath frequencies with a
For the FC oscillatorU(g)=uw?g?/2, the coupling density of statesD(wg) [D(wo)|l(wo)|?/%2we=v?m(y?
Hamiltonian is +wj)], then

016121-10
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3 2
K(t) — h e 'y|t\ thpt Zﬁw,u )\YZE f CUO[ n ](a”{[BIBJ + BOB ]
oM -{&%+%Ekw@wVMﬂE%-%ﬂkwwwL
h(s+y)’
So 2 A wu\ o [2n ]
5= (e - 2y0), Ty + Jp = ’22 R et
3
=3 8= T (s e [+ oot b”-['sisa
~ BB ]sin(wgt)), (59

3
A=2 Bls(s + ) + 201 y]eY,
i=1 ' wherea; andb;; are the same as in Sec. Ill A.
For the quantum FC oscillator, the equation for the re-

1 duced density matriXor the Wigner distribution function
B1= m has no the Lindblad structure because it does not contain the
1 terms[ixy(t)/2][p.{q,p}.] and {Dgq(t)/#%][p,[p, p]]. This
is the consequence of the absence of random forces in the
B, = ;, equation forq(t). However, the positivity of the density ma-
(-s)(s,—s3) trix is guaranteed through the time dependence of friction,
diffusion coefficients in the momentum and of the mixed
1 diffusion coefficient, and by the special ratio betweag),
Bs= (3-5)(S5-5)) and \,. Indeed, the self-consistently obtained friction and

diffusion coefficients should not violate the uncertainty prin-
ands(i=1,2,3 are the roots of the cubic equation following ciple for the momentum and coordinate. The non stationary

Eq. (17): transport coefficients for the quantum FC oscillator were de-
_ rived before in Refs[10,12,14,1% using the microscopic
d(s) =%+ 2hwsK(S) + Slu=[(s+ y)(S + w?) dynamics and the path integral representation, but with an-

_ _ other spectral density of the internal heat bath excitations
200y V(s + 7)=0. (56) than used by us. In the classical limit the time-dependent
At y— o we have the instantaneous dissipation with the kerfriction and diffusion coefficients were obtained in Rf7].
nel k?K(t)=(2\«?/%)8(t). From Eq.(13) it is easily to show In accordance with Eqs(36) the diffusion coefficients
that the fluctuation-dissipation relation holds for the quantunhave the following form at— oo
FC oscillator.
For a damped quantum FC oscillator, the expressions for
transport coefficients follow from Eq$24)—(27), (33—(35), Dpp(®©) = Ap(@) app(),
(51), and(52), and we obtain

Aq(D) = Dgg() =0,
qu(oc) =5 g(oo)o-qq(oc) O'pp(oo) (59
m(t) = u,

If 0>Re(s,)=Re(s;) >Re(s;), then using the relationship
between the roots of Eq56), S;+S,+S3=—y, $S,+5,S;
+8,5=w?, ands;S,5;= (2N yo— w?), we obtain

1. )
_[‘thpt + /-Lf(t)‘-]qtqt]a

Dopl) = N0, + 5

1 1 E
Dygp(t) = §|:§(t)‘](hqt - [_Lthp + D\p(t) aa * Jaa

Np() == (525,
(57)

and

2hw,u)\y2 wo[2n - ] £() = 5'32:—7'2_
Jog, = E f ——5—(a{[BiB! + ByB}] s+ 1 - 2 vy

- [BiB+ BOB{]cos(th)} - bij[BtB]O ~ByBlIsin(wg)),  The asymptotic variances are
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()= _ 2hoNy [ wo cotl g/ (2T)] 2Tw)\y2 (Oho— 2 (X tS+S,+ )

a, ee]

ad W Jy D S DRt DR D) 1 b (Xt S0+ 5) (X + S3)(Sy + S)(Sy +S9)(S, + S9)
_Ts (2= 5,00 = )

Bnmo X = Yo+ 0% + (2hyo — o)y’

()= Zhw,u)\yz f wy cotHAwg/(2T)]
O (00
pol) = e, = DS+ D) S+ W)+ )

Coton ﬁé (900~ 0S5+ %0+ 550 *959%) 1 2 (2= gl + Rhory~ o]

n=0 (Xn+sl)(xn+32)(Xn+52)(51+52)(51+53)(52+53) o X = Y+ X+ (2N yw — 0?)y’
[
1 The asymptoticgt>t’>0) of the symmetric correlation
Tqp(*) = E(qupw *+Jp.0.)=0, (60 functions,

where x,=27Tn/%. To evaluate the integrals in Eqe0), as _ 2hoNy (7 . 20 cotl{Awy/(2T)]cod wy(t - t')]
one commonly expands the hyperbolic cotangent into a uni- “%% =~ 7, J, ~ ° (S + wd) (S5 + wd) (S5 + W)

formly convergent series.
At the high-temperaturéthe classical limit and weak-

3 ’
coupling limit (small\), Egs.(59), are transformed into e Zﬁ“’“)‘yzf 0“’0 cott{Aiwg/(2T)Jcog wo(t ~ t')]
PPy (£ + wd)($2+ 0d) (S + wd)
Dpp(®) =Np(®) T, Dgp() =0, (61)
(63)
because
- have different decay behavior at the low- and high-
&(=) =6, temperature regimes:
T psssi(s+ (s + S)(S+ ) (e - 20 y0) ‘q“ TusSs (t-1)?  mue® (t-t)
= I -T e31(t—t’)
= (T o) S2S3(S2 + Sp)
%aa 2pe?y| (s=s)(s3—8)
2TolYu $159(51 + 5)e21 ) si5(s; + 5
Upp(oc) == = ,LLT + +
(s1+5)(s51+3)(2 + S3) (s1-9)(3=%)  (s1-S3)(S2—S»)
Here, we again use the relationships between the roots of the )
cubic equation56). Thus, at the limits of high temperature it Si(s; + 55)e )
and of small damping the classical equipartition theorem ptp (T=0)—-—= (S, 5)(S3— )
holds true.
At the low-temperature limitT — 0) we obtain from Egs. . (s, + 552 i(sl +5,)est )
(60) the following asymptotic variances: (s1-5)(S3—Sy) (31 S3)(S, — S3)
2)-sn(2) (3
In| 5 |+sIn|l 5 | +s3In{ 5 -t
(Oo)_ﬁw)\yzsi n(é =i S sin $ e (Tﬁw)_)_M_Tlsl(Sz"'SS)esi(H)
T (B-DE-DE-D) PP (S2-s)(S3-8p)
2 2 , S2S1+59e” ™) sy(sy ¢ sZ)eSZ“‘”}
ggm( ) + <2 In( )+s§§|n( ) (1-9)(855-%)  (-S)(-S) |
o (o) = 2P S S s 64
P m CEEICEICEEY

62 So at low temperature the FC oscillator exhibits powerlike

decay of the correlation function in the coordinate in the

At the weak-coupling limit we haver,,(=)=fiuw/2 and long-time limit. This effect is not manifested in the classical
0gq(®)=h/2uw. limit where we have an exponential decay.
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A. FC inverted oscillator

1 . : -
At:5|:Ct+Ct +iﬁf dACK(t-7)-CK* (t‘T)]}-
0

We can also apply the formulas obtained for the FC os-
cillator to the inverted oscillator wittJ(q)=-uw?g?/2. In

these formulas we should us:%:—,u[Zw)\wwz] and the i . [t .
rootss of the equation Bi= 20 Ci—Ci+ifi| dfCK(t-7)+CK*(t-7]],
0
(s+ 7)(S— 0?) — 20N ¥* = 0.
2

Since for the inverted oscillator we have no equilibrium re- Kt-n= AZE Me—iwyﬁ—f),
gime for large times in comparison to the harmonic oscilla- v ho,
tor, the direct use of asymptotic formulas leads to unphysical
results like the negative diffusion coefficient in the momen- o 1
tum at low temperature. G s+ihisK(s) +ielh |’

B. FC free motion |

For the free motiofU(q)=0], the formulas of the FC e=ho-\X ho
oscillator can be used with=-2uw\y and the rootss, of )
the equation If we replace the sums above by the integral over the bath
frequencies with a densit(w,) of states as in the previous
(s+7)8° = 20\ =0. section, then we obtain

V. RWA OSCILLATOR K(t) =

_7|t| %% f sm(wot)

In quantum optics and other fields the rotating-wave ap-

proximation is widely used1,3,4. The coupling Hamil- Ay i)\y?m(szlyz)
tonian for the RWA oscillator is K(s) = 2i(s+y) 2mh(S— )’
Hep=AY2Y, (Ma'b, + T'ab)
cb Ey( v v v V) EZﬁ(w—)\'y),
Auw + A T 2
b, +T,bh)+iy/— r,b 1 L ot s
2h 2 ( ) Zﬁuwpgv (b, A= EE (B Ujeslt"'ﬁj 7; e3'],
j=1
-Tb,).
.2
Here, the coupling constanits, are taken as complex. The B, = _ peSt— g _*esjt
RWA coupling excludes the nonresonaib! andab, terms = [Bme = 7]
aTbT and ab,. With this exclusion we d|sregard the rapidly
oscnlatlng terms. As in the case of the FC oscillator, the 2 2
fluctuation-dissipation relation is satisfied for the RWA oscil- C,=>Cl= 2 Bi(s; + y)e,
lator. j=1
For the RWA oscillator withJ(q) = uw?g?/2 the solutions
of the equations of motion are written as B iNy A In(s]¥P) |n(82/72)
URE AR I Ry
N A 1Y
q(t) = Aq(0) + Bp(0) +i ZMwJo dACfi(t-7 Here, 8,=—B,=(s,~5,) "}, ands; ands, are two simple roots
of the equation
-CA(t-7],

s+ifisK(s) +ie/h =0,

- hiuw (1 vt in which the term proportional to (8%/?) is disregarded.
p(t) = - u“@Bq(0) + Ap(0) - Tf drC.fi(t-17) This term does not introduce a singularity sst0 because
0 sIn(s)— 0 ass— 0. This term leads to corrections of the next
+Cf(t- 7], (65) order in\ which are assumed to be small. In the limit of a
where large phonon bandwidtly, the dissipative kernel is reduced
to the familiar form[9] K(t)=(\/A)o(t)=(iN/m)P(1/1). It
A2 T N ,uw was stated in Ref.28] that the effect of the principal-value
f(t) = 72 I',| b,(0) + ﬁ_,, q(0) term on the physical behavior of the system is small.
v @y For the RWA oscillator, the time-dependent transport co-

N efficients result as follows: friction coefficients in the coor-
+i 2 p(O) gl dinate and in momentum,

016121-13



KANOKOQV et al. PHYSICAL REVIEW E 71, 016121(2009

1‘61 I I j T - T T T T T
i 0.25
1 020 ]
5}
E} 015} )
\{L
ol 0.10 ]
0.05 ]
0.15F; |
£ 0.10 ]
=
o
*, 0.05 ]
&
7
S 0.00
- - . . . oosk . | | ]
L O — { 16} I ;
1of
12f ]
< o8l ]
2060 1 o8| ]
0.4
04f ]
02
0.0 : : 0.0 - . . . ,
6 8 10 s 10 15 20 25 30

~

wt

FIG. 1. Calculated time dependencelgf, Jqp, andJyq for Am=1 MeV andu =448, (left sidg) and foriw=3 MeV andu=50m, (right
side). We set\,/w=1/(fw). The results foiT/ (Aw)=0.1/(w) and 1{#w) are presented by solid and dashed lines, respectively.

AtAt + (Mw)thBt qu(t) =0. (71)

)\q(t) = )\p(t) == A{Z + (Mw)ZBtZ ! (66)

In expression69),
inverse mass parameter

_ _ 3= h)\yzzfxdw wOCOtl‘[ﬁwol(ZT)]illij(t)
BA - AB, W 2mpw [ o (P + wp)(s +iwo)(s) ~iwo)|

1/m(t):Af+(,uw)th2' (67)

where
stiffness coefficient

gyt = CICI" + CiClh - Cich et - cicf e,

BtAt_AtBt .
) =(po)’—< ———H >, (68) At the limit of t— oo,
Al + (uw) B
and diffusion coefficients in the coordinate, Dgq(®) = (Mt))szp(w) = Ng(29)Tgq(*)- (72)
1.
Dgq(®) _}‘q(t)‘]qtqr“L 5‘]%’ (69) This set of diffusion coefficients can be obtained from Eq.
(37) assuming that the asymptotic state is a Gibbs
in the momentum, p=exd-H./T]/Tr(exd—H/T]) [25]. If Re(s)>Re(sy),
then
Dpp(t) = (Mw)quq(t)u (70)
and mixed diffusion coefficients in the coordinate and mo-

l *
mentum: Ag(®) == é(Sz +5,),
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FIG. 2. Calculated time dependence of diffusion and friction coefficientg. fob0my andzw=3 MeV atT/(%w)=0.033(left side and
AT
op (S+5)(S+5)(S,+5)(S+5)
(75)

T/(f0)=0.33(right sidg. The results leading to the friction coefficients/w=0.17, 0.33, 0.50, and 0.66 are presented by solid, dashed,

dotted, and dash-dotted lines, respectively.
0qq(®) =Jqq, =~

lIm(sy)| _ 73

1im(ee) = &) (pw)?=
snw
which is positive because Rg) <0 and Rés,) <O.
At low temperature(T—0) the following expression is

obtained:
i(S15;~ s15)

The asymptotic variance in the coordinate can be easily de-
N
201 (5,+5) (S + (81 + ) (S +5)|
(76)

rived:
wo CotH A wy/(2T)]

N2
Oal) = Ja.a. = 2mwp o dwo‘Sl +iwo|*|sy + iwg|?

_ M/ZT[ : ( s, 7o) = o0, =

op | ot \ (S = X)(S1+5)(S1 = $)(S1 + )

- *52 — + H.c.) which is positive since lif$;S,) >0 up to the leading order

(S X) (S + ) (S~ 8)(S +8) of \. In the weak-coupling limih <1, Egs.(75) and(76) are
. . reduced to the known formulas
175 +5+S, } (74)
o-qq(oo) = m

(51+5)(S+ ) (S, + ) (5, +5)

where againx,=27nT/A. At high temperaturdT— ) we
and

016121-15
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FIG. 3. Calculated time dependence of diffusion and friction coefficientgfof48n, andZw=1 MeV atT/(Aw)=0.5 (left sidg and
T/(hw)=1.5(right side. The results leading to the friction coefficiem§/?b=0.5, 1.0, 1.5, and 2.0 are presented by solid, dashed, dotted,
and dash-dotted lines, respectively.
Y (tt) = CiCl + CyCh @) —Cich dent’ - yCleriont,

fi
O'qq(oo) = ﬁ,
H The asymptotidt>t’>0) symmetric correlation function
respectively. . ,
Due toXq#0 andDy,#0, the equation for the reduced  _as _ % o 20 COt{Arwg/(2T) Jeod wlt ~ '])
W 2mop)y |51+ iwol’|s; + i wgl?

density matrix(or the Wigner probability distribution func-
tion) has the Lindblad structure. The positivity of the density

matrix holds for any initial states even if the asymptotic fric-

tion and diffusion coefficients in the coordinate and momen-has a nonexponential powerlike decay behavior at the zero-
tum are used in the master equati®3) under the condition and high-temperature limits:

R -\ 1

that the density matrix be initially positive.
The symmetric correlation function in coordinate has the ;as (1_, o ~
7T 0 s P17 2mefu iU

(78)

following structure:
%% (79
Tae = A Ty * BBy opp, Amuw : . -
. o o5 (T2 o) MY T8 " Sl ~ 509 + )
xS dwowo COtk[ﬁwo/z(ZT)]["/’ij(tat*) +. gi(tt)] , H ToulsYs|*(t - t")
i Jo [+ wplls + iwo][s; =~ i -AT 1
(77) - muw® (t-t)2 (80)

This is related to the pure quantum nature of the interaction

where
016121-16
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FIG. 4. The calculated asymptotic diffusion coefficients as function¥/6fw) (left side) and\y/ (right sidg for x=50m; and#®
=3 MeV. The dependence on temperature is presented jtib=0.17 (solid lineg, 0.33 (dashed lines 0.50 (dotted line, and 0.66
(dash-dotted lings The dependence ax, is presented foll/(w)=0.033(solid lineg, 0.17 (dashed lines and 0.33(dotted lines.
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FIG. 5. The same as in Fig. 4, but far=448m, and/i®=1 MeV. The dependence on temperature is presentel fas=0.25 (solid
lines), 0.75 (dashed lings 1.25 (dotted lines, and 1.75(dash-dotted lings The dependence ax,/ o is presented foll/(fw)=0.5 (solid
lines), 0.75(dashed lines 1 (dotted line$, and 1.5(dash-dotted lines
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FIG. 6. For u=50my, Aw=3 MeV and the indicated tempera- FIG. 8. Foru=50m,, #o=3 MeV, and the indicated tempera-
tures, the calculated asymptotic diffusion coefficients are shown agyres, the calculated asymptotic variances are shown as functions of
functions of y/w at \,/®=0.33 (solid lines, 0.66 (dashed lines /% at\,/®=0.33(solid liney, 0.66(dashed lines and 1.33(dot-
and 1.33(dotted lineg. The values of “classic” diffusion coeffi- ted lineg. The values of variances calculated with the “classic”
cientsDj/ (ufiw?) are presented by the corresponding arrows.  diffusion coefficientsDS , are presented by arrows.

between the collective and heat bath subsystems: each actafd \ are fixed by given certain asymptotic values&f)
interaction must consist in the annihilation of a quantum ingnd Ap(%):

one subsystem and its creation in another subsystem. Note

that the result$79) and(80) do not depend ory. E=E0) = pa?,  Np(®) =\,
We consider the case of a small mass50m, (my is the
VI. ILLUSTRATIVE CALCULATIONS OF TRANSPORT nucleon magsand a large vaIuéZZ):3~MeV and the case of
COEFFICIENTS FOR THE FC OSCILLATOR a large masg.=448m, and a smallfio=1 MeV. As shown

e . . in Fig. 1,J,p, Jgq @ndJy, start from zero at=0 and in some
The diffusion and friction coefficients depend on the pa-time reach the asymptotic values which coincide with the
rametersw, A, andy. The value ofy should be taken to hold  asymptotic values of the variances as follows from E6).
the conditiony> w. We setfiy=12 MeV. The values of»  The time dependences of the friction and diffusion coeffi-

a| T =01 | afrew=to o ] 052} % Taw=01 | [ =10 ]
3 e PN g 18k % ]
| 1 ] g k L6l
= . 2 omf s 177~ ]
& 2 1 7 ] 3 ARy Ly
=11 Jee--mm77777 Z 040l T
A Ipo pmm =777 L Lf-=— L o 12
t 4 t t } t t t 0361 } } + } 1 10f } t t +——
'. 2.0} .
‘.\ 02} - ] — -1 2 R
2 -0.2F .‘\\\ . | <
= R v < lop 1 .
= ~— 0.0-\\. = L6 -
~_~ L .~ - ~ ~ . 6} . ’,’ .
38 o~ < T L2p L e ] e
D% ) 02 ‘.‘\\\‘§‘ | vﬂ- . t”, /,,
-0.6} 4 ‘~_‘ = br:-. —',// ] ‘,
04} el 08y —— 1 5[* 1
o8l N N . N , . o = . N = . N
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
v /@ v /% $2.0) Y /®
FIG. 7. The same as in Fig. 6, but fogp=4487; (fiw FIG. 9. The same as in Fig. 8, but far=448m, and
=1 MeV) and\,/®=0.5(solid lines, 1 (dashed lines and 2(dot- =1 MeV. The calculations are performed far,/®=0.5 (solid
ted lines. lines), 1 (dashed lines and 2(dotted lines.

016121-18



NON-MARKOVIAN DYNAMICS OF... . I. ... PHYSICAL REVIEW E 71, 016121(2009

2.6F 4 1.9} 20l
24 VA BT 1 Lo
- T/hE)=1.5
s 22 N 14 1.6 ]
5 L7F T/(h@)=0.33 %
=2
3 20t ’? 12f
oF 16k % i
18t ° all
s 1o}
L6l ' e TARD=0033 ey
= osl <7 | osl Tw=0.5 |
L4} 1 K I I AN
L N N S N
o0l ] 026t 1 2.0t
0.28 20t L 1
28T 1 0.2af
& ozt & 1.6+ ,..-"">T/(hm)=1.5
= B : 7
< 022} > tor =
= 024} 4 =
3 3 .
6022} 1 ~ &
022 0200 T/(%6)=0.33 ] o5 5l Ll
020}
018l | 018} Tih)=0.033 T ~
08k 1 o8l 7 Sm@Ed=05
0.16% . . . P c
00 02 0.4 0.6 4002 04 06 08 10 0.6 08 10 12 14 00 05 10 15 20 25 3.0
T/(h®) kp/w T/(#®) 7»p/53

FIG. 10. For u=50m, and fiw=3 MeV, the calculated FIG. 11. The same as in Fig. 10, but far=448m, and A%
asymptotic variancesr,(«<) and oqq(«) as functions ofT/(Aw) =1 Mev. The temperature dependence is presented ftH=0.5
(left sidg and\p/w (right sidg are compared with the asymptotic (gashed linesand 2.0(dotted lines. The dependence oK,/ @ is

variances obtained with the “classic” diffusion coefficier[bip presented foll/ (f»)=0.5 (dashed lingsand 1.5(dotted lines.
(solid lineg. The temperature dependence is presented\ féi

=0.17(dashed lingsand 0.66(dotted line$. The dependence oy,
is presented fofT/(fw)=0.033 (dashed lines and 0.33(dotted
lines).

calculatedD,,,. This difference increases with, and o, but
decreases with increasingy

The dependence of the diffusion coefficientsyleads to
) o .. the dependence of the asymptotic varianegsand o, on y
cients are shown in Figs. 2 and 3 for these cases. The diffyrigs. 8 and @ As in the case of the diffusion coefficients,
sion and friction\, coefficientsDpp, Dpg, and A, respec-  the dependence af,, On y becomes steeper with increasing
tively, are equal to zero at initial time. After some transienty Tpe asymptotic varianc and o< obtained with the
time the coefficients take asymptotic values. The transier@%ssic set of diffusion coefficient§. =D andD,,=D
time increases withe and\,,. The values oD, and\, are =0, are shown in Figs. 8 and 9pas well. erithe, %qr
positivg att>_q. During a short initial tir_ne interval the value _q 4 MeV, (qu<0thq for Ay>5 MeV, we find, for large
of Dy is positive and becomes n(_agatlve later on. o tem_peratureT21 MeV, gqq>ggq for 7iy<25 MeV. Th_e

The dependences of asymptotic values of the coefficients,ice of,y=12 MeV looks reasonable for further applica-
Dpp andDpq on T and A, are shown in Figs. 4 and R, tions in the case of@<5 MeV. In spite of a largeD ,, than
depends n~e§1rly I_mear 0n, andT in the intervals cqnadered. the classic value, the difference betwegg and oS, is quite
For largerw in Fig. 4, the dependence Of,, on T is rather  goa) que to the negativity oD Calculations of many

weak because of the importance of quantum effects. Withsenaples like the penetrability of a barrier and the local-
increasing temperature the absolute valueDgf decreases j ation of a distribution in coordinate use often Nty

approaching to zero in the limif — c. ence one cannot expect a large deviation of these calcu-

The dependences of the calculated asymptotic values htoq ohservables from the ones calculated with the classic

Dpp andDy,q on the parametey are shown in Figs. 6 and 7 pe therefore, the wide use of the classic diffusion coeffi-
for various\, and two differentT. The dependence om cie%ts is justified.

becomes steeper with increasing resuliihg. For #y The calculated asymptotic variances as functions afd
>7 MeV, the value oDy, is expected to be negative. For A\, are compared in Figs. 10 and 11 with the asymptotic
comparison, we show the “classic” values variancess, ando$,. The deviation ofrgq andor, from o%,
Df,p: 0.5i\ @ coth{A@/(2T)] andog . r_espectively,_increaseg widp. While trle difference
Oqq~ Tqq iNCreases WitlT, the differencer,,,— oy, decreases
to demonstrate the resonability of the calculations with thewveakly. In the purely quantum reginfas>T, the value of
chosen parameter@f,p is smaller than the corresponding oy is smaller thamgq. With increasingT or decreasingiw

016121-19



KANOKOQV et al. PHYSICAL REVIEW E 71, 016121(2009

the classic varianceg, underestimates,, However, the tions in the RWA oscillator. In the case of the FC oscillator a
difference betweernr,, and a'cq does not exceed 15% at nonexponential powerlike decay of the correlation function
fix,<2 MeV. Therefore, observables related to thein the coordinate is obtained only at the low-temperature
asymptotic oqq can be obtained quite similarly with the limit.
present and classic diffusion coefficients. The corresponding The calculated results depend rather weakly on the param-
comparison of the decay rate will be presented in paper Il. etery in many applications. The value B, underestimates
the asymptotic value dd,,, but the asymptotic values
VII. SUMMARY and ogq are close due to the negativity &f,, The found

The generalized Linbland equations with nonstationaryTansient times foD,(t), Dqy(t), andDg(t) are quite short.
transport coefficients are derived from the Langevin equa- , Ve Plan to apply the elaborated formalism to the analysis
tions for the case of nonlinear non-Markovian noise. The®f €xperiments on nuclear subbarrier fusion, fission, and bi-
equations of motion for the collective coordinates are consis?@'Y réaction processes. For example, the lifetime of a di-
tent with the generalized quantum fluctuation dissipation reNclear system with respect to the decay can be calculated in
lations. Explicit expressions for the time-dependent transporifiS @PProach. Also transient times in different nuclear dissi-
coefficients are presented for the case of FC and RWA oscilPativé non-Markovian processes can be investigated. In pa-
lators and a general linear coupling in the coordinate and®r !l we will study memory effects in the collective dynam-
momentum between the collective harmonic oscillator andS ©f @ quantum system, in the escape through a potential
heat bath. barrier, in the capture into the potential well, and in the loss

The explicit equations for the correlation functions show©f quantum coherence.
that the Onsanger’s regression hypothesis does not hold ex-
actly for the non-Markovian equations of motion. However,
under some conditions the regression of fluctuations goes to ACKNOWLEDGMENTS
zero in the same manner as the average values.
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